首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ferrington DA  Yao Q  Squier TC  Bigelow DJ 《Biochemistry》2002,41(44):13289-13296
Alterations in expression levels of phospholamban (PLB) relative to the sarcoplasmic reticulum (SR) Ca-ATPase have been suggested to underlie defects of calcium regulation in the failing heart and other cardiac pathologies. To understand how variation in PLB expression relative to that of the Ca-ATPase can modulate calcium transport, we have investigated the inhibition of the Ca-ATPase by PLB in native SR membranes from slow-twitch skeletal and cardiac muscle and in reconstituted proteoliposomes. Quantitative immunoblotting in combination with affinity-purified protein standards was used to measure protein concentrations of PLB and of the Ca-ATPase. Functional inhibition of the Ca-ATPase was determined from both the calcium concentrations for half-maximal activation (Ca(1/2)) and the shift in the calcium concentrations following release of PLB inhibition (i.e., (Delta)Ca(1/2)) by incubation with monoclonal antibodies against PLB, which are equivalent to phosphorylation of PLB by cAMP-dependent protein kinase. We report that equivalent levels of PLB inhibition and antibody-induced activation ((Delta)Ca(1/2) = 0.25 +/- 0.02 microM) are observed in SR membranes from slow-twitch skeletal and cardiac muscle, where molar stoichiometries of PLB expressed per Ca-ATPase vary, respectively, from 0.9 +/- 0.1 to 4.1 +/- 0.8. Similar levels of inhibition to those observed in isolated SR vesicles were observed using reconstituted proteoliposomes following co-reconstitution of affinity-purified Ca-ATPase with PLB. These results indicate that total expression levels of one PLB per Ca-ATPase result in full inhibition of the Ca-ATPase and, based on the measured K(D) (140 +/- 30 microM), suggests one PLB complexed with two Ca-ATPase molecules is sufficient for full inhibition of activity. Therefore, the excess PLB expressed in the heart over that required for inhibition suggests a capability for graded responses of the Ca-ATPase activity to endogenous kinases and phosphatases that modulate the level of phosphorylation necessary to relieve inhibition of the Ca-ATPase by PLB.  相似文献   

2.
Rat liver endoplasmic reticulum (ER) membranes were investigated for the presence of proteins having structural relationships with sarcoplasmic reticulum (SR) proteins. Western immunoblots of ER proteins probed with polyclonal antibodies raised against the 100-kDa SR Ca-ATPase of rabbit skeletal muscle identified a single reactive protein of 100 kDa. Also, the antibody inhibited up to 50% the Ca-ATPase activity of isolated ER membranes. Antisera raised against the major intraluminal calcium binding protein of rabbit skeletal muscle SR, calsequestrin (CS), cross-reacted with an ER peptide of about 63 kDa, by the blotting technique. Stains-All treatment of slab gels showed that the cross-reactive peptide stained metachromatically blue, similarly to SR CS. Two-dimensional electrophoresis (Michalak, M., Campbell, K. P., and MacLennan, D. H. (1980) J. Biol. Chem. 255, 1317-1326) of ER proteins showed that the CS-like component of liver ER, similarly to skeletal CS, fell off the diagonal line, as expected from the characteristic pH dependence of the rate of mobility of mammalian CS. In addition, the CS-like component of liver ER was released from the vesicles by alkaline treatment and was found to be able to bind calcium, by a 45Ca overlay technique. From these findings, we conclude that a 100-kDa membrane protein of liver ER is the Ca-ATPase, and that the peripheral protein in the 63-kDa range is closely structurally and functionally related to skeletal CS.  相似文献   

3.
K H Cheng  J R Lepock 《Biochemistry》1992,31(16):4074-4080
Calcium uptake by rabbit skeletal sarcoplasmic reticulum (SR) is inhibited with an effective inactivation temperature (TI) of 37 degrees C in EGTA with no effect on ATPase activity. Since the Ca-ATPase denatures at a much higher temperature (49 degrees C) in EGTA, this suggests that a small or localized conformational change of the Ca-ATPase at 37 degrees C results in inability to accumulate calcium by the SR. Using a fluorescent analogue of dicyclohexylcarbodiimide, N-cyclohexyl-N'-[4-(dimethylamino)-alpha-naphthyl]-carbodiimide (NCD-4), the region of the calcium binding sites of the SR Ca-ATPase was labeled. Steady-state and frequency-resolved fluorescence measurements were subsequently performed on the NCD-4-labeled Ca-ATPase. Site-specific information pertaining to the hydrophobicity and segmental flexibility of the region of the calcium binding sites was derived from the steady-state fluorescence intensity, lifetime, and rotational rate of the covalently bound NCD-4 label as a function of temperature (0-50 degrees C). A reversible transition at approximately 15 degrees C and an irreversible transition at approximately 35 degrees C were deduced from the measured fluorescence parameters. The low-temperature transition agrees with the previously observed break in the Arrhenius plot of ATPase activity of the native Ca-ATPase at 15-20 degrees C. The high-temperature transition conforms well with the conformational transition, resulting in uncoupling of Ca translocation from ATP hydrolysis as predicted from the irreversible inactivation of Ca uptake at 31-37 degrees C in 1 mM EGTA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The sarcoplasmic reticulum (SR) of skeletal muscle contains a 53 kDa glycoprotein of unknown function, as well as the (Ca(2+)-Mg2+)-ATPase. It has been suggested that the glycoprotein couples the hydrolysis of ATP by the ATPase to the transport of calcium. It has been shown that if SR vesicles are solubilized in cholate in media containing low K+ concentrations followed by reconstitution, then vesicles are formed containing the glycoprotein and with ATP hydrolysis coupled to Ca2+ accumulation, as shown by a large stimulation of ATPase activity by addition of A23187. In contrast, if SR vesicles are solubilized in media containing a high concentration of K+, then the vesicles that are produced following reconstitution lack the glycoprotein and show low stimulation by A23187 (Leonards, K.S. and Kutchai, H. (1985) Biochemistry 24, 4876-4884). We show that the effect of K+ on reconstitution does not follow from any changes in the amount of glycoprotein but rather from an effect of K+ on the detergent properties of cholate. In low K+ media, the cmc of cholate is high, cholate is a relatively poor detergent and incomplete solubilization results in 'reconstitution' of vesicles with the correct orientation of ATPase molecules. In high K+ media, the cmc of cholate is reduced and more complete solubilization of the SR leads to a true reconstitution with the formation of vesicles with a random orientation of ATPase molecules. The experiments provide no evidence for an effect of the glycoprotein on the (Ca(2+)-Mg2+)-ATPase.  相似文献   

5.
P V Usatiuk  V A Tuga? 《Biofizika》1985,30(3):450-454
The dependence of fluorescence intensity changes of potential-sensitive fluorescent probes 3,3'-dipropyl-2,2'-thyodicarbocianine and 1-anilino-8-naphtalenesulphonae on the ATP concentration during Ca2+ transport in fragmented SR of the rabbit skeletal muscle has been studied. An increase in the accumulation of Ca2+ in the SR vesicles caused by ATP is accompanied by an increase in the fluorescence intensity of the potential-sensitive probes. These fluorescence changes are related neither to ATP or Ca2+ effect but are coupled with cation accumulation inside the vesicles since they are not observed in the presence of either EGTA or triton X-100 or in the absence of Mg2+. The results obtained prove the membrane potential generation in SR in the course of ATP-dependent Ca2+ transport.  相似文献   

6.
We have studied the effects of C28R2, a basic peptide derived from the autoinhibitory domain of the plasma membrane Ca-ATPase, on enzyme activity, oligomeric state, and E1-E2 conformational equilibrium of the Ca-ATPase from skeletal and cardiac sarcoplasmic reticulum (SR). Time-resolved phosphorescence anisotropy (TPA) was used to determine changes in the distribution of Ca-ATPase among its different oligomeric species in SR. C28R2, at a concentration of 1-10 microM, inhibits the Ca-ATPase activity of both skeletal and cardiac SR (CSR). In skeletal SR, this inhibition by C28R2 is much greater at low (0.15 microM) than at high (10 microM) Ca2+, whereas in CSR the inhibition is the same at low and high Ca2+. The effects of the peptide on the rotational mobility of the Ca-ATPase correlated well with function, indicating that C28R2-induced protein aggregation and Ca-ATPase inhibition are much more Ca-dependent in skeletal than in CSR. In CSR at low Ca2+, phospholamban (PLB) antibody (functionally equivalent to PLB phosphorylation) increased the inhibitory effect of C28R2 slightly. Fluorescence of fluorescein 5-isothiocyanate-labeled SR suggests that C28R2 stabilizes the E1 conformation of the Ca-ATPase in skeletal SR, whereas in CSR it stabilizes E2. After the addition of PLB antibody, C28R2 still stabilizes the E2 conformational state of CSR. Therefore, we conclude that C28R2 affects Ca-ATPase activity, conformation, and self-association differently in cardiac and skeletal SR and that PLB is probably not responsible for the differences.  相似文献   

7.
Phosphorylation of skeletal muscle ryanodine receptor (RyR) calcium release channels by endogenous kinases incorporated into lipid bilayers with native sarcoplasmic reticulum vesicles was investigated during exposure to 2 mM cytoplasmic ATP. Activation of RyRs after 1-min exposure to ATP was reversible upon ATP washout. In contrast, activation after 5 to 8 min was largely irreversible: the small fall in activity with washout was significantly less than that after brief ATP exposure. The irreversible activation was reduced by acid phosphatase and was not seen after exposure to nonhydrolyzable ATP analogs. The data suggested that the channel complex was phosphorylated after addition of ATP and that phosphorylation reduced the RyR's sensitivity to ATP, adenosine, and Ca(2+). The endogenous kinase was likely to be a calcium calmodulin kinase II (CaMKII) because the CaMKII inhibitor KN-93 and an inhibitory peptide for CaMKII prevented the phosphorylation-induced irreversible activation. In contrast, phosphorylation effects remained unchanged with inhibitory peptides for protein kinase C and A. The presence of CaMKIIbeta in the SR vesicles was confirmed by immunoblotting. The results suggest that CaMKII is anchored to skeletal muscle RyRs and that phosphorylation by this kinase alters the enhancement of channel activity by ATP and Ca(2+).  相似文献   

8.
Activation of cardiac muscle sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) by beta1-agonists involves cAMP- and PKA-dependent phosphorylation of phospholamban (PLB), which relieves the inhibitory effects of PLB on SERCA2a. To investigate the mechanism of SERCA2a activation, we compared the kinetic properties of SERCA2a expressed with (+) and without (-) PLB in High Five insect cell microsomes to those of SERCA1 and SERCA2a in native skeletal and cardiac muscle SR. Both native SERCA1 and expressed SERCA2a without PLB exhibited high-affinity (10-50 microM) activation of pre-steady-state catalytic site dephosphorylation by ATP, steady-state accumulation of the ADP-sensitive phosphoenzyme (E1P), and a rapid phase of EGTA-induced phosphoenzyme (E2P) hydrolysis. In contrast, SERCA2a in native cardiac SR vesicles and expressed SERCA2a with PLB lacked the high-affinity activation by ATP and the rapid phase of E2P hydrolysis, and exhibited low steady-state levels of E1P. The results indicate that the kinetic differences in Ca2+ transport between skeletal and cardiac SR are due to the presence of phospholamban in cardiac SR, and not due to isoform-dependent differences between SERCA1 and SERCA2a. Therefore, the results are discussed in terms of a model in which PLB interferes with SERCA2a oligomeric interactions, which are important for the mechanism of Ca2+ transport in skeletal muscle SERCA1 [Mahaney, J. E., Thomas, D. D., and Froehlich, J. P. (2004) Biochemistry 43, 4400-4416]. We propose that intermolecular coupling of SERCA2a molecules during catalytic cycling is obligatory for the changes in Ca2+ transport activity that accompany the relief of PLB inhibition of the cardiac SR Ca2+-ATPase.  相似文献   

9.
The 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (Chaps)-solubilized ryanodine receptor (RyR) of lobster skeletal muscle has been isolated by rate density centrifugation as a 30 S protein complex. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of the purified 30 S receptor revealed a single high molecular weight protein band with a mobility intermediate between those of the mammalian skeletal and cardiac M(r) 565,000 RyR polypeptides. Immunoblot analysis showed no or only minimal cross-reactivity with the rabbit skeletal and canine cardiac RyR polypeptides. By immunofluorescence the lobster RyR was localized to the junctions of the A-I bands. Following planar lipid bilayer reconstitution of the purified 30 S lobster RyR, single channel K+ and Ca2+ currents were observed which were modified by ryanodine and optimally activated by millimolar concentrations of cis (cytoplasmic) Ca2+. Vesicle-45Ca2+ flux measurements also indicated an optimal activation of the lobster Ca2+ channel by millimolar Ca2+, whereas 45Ca2+ efflux from mammalian skeletal and cardiac muscle sarcoplasmic reticulum (SR) vesicles is optimally activated by micromolar Ca2+. Further, mammalian muscle SR Ca2+ release activity is modulated by Mg2+ and ATP, whereas neither ligand appreciably affected 45Ca2+ efflux from lobster SR vesicles. These results suggested that lobster and mammalian muscle express immunologically and functionally distinct SR Ca2+ release channel protein complexes.  相似文献   

10.
The interaction of lanthanides with isolated sarcoplasmic reticulum (SR) vesicles from rabbit skeletal muscle and the effects of lanthanides on 45Ca2+ uptake by the vesicles were studied. 153Gd3+ was taken up by the vesicles in the absence of ATP and oxalate in a time-dependent manner, reaching a maximum total accumulation of 380 nmol 153Gd3+/mg protein after 20 min with 200 microM 153Gd3+. This 153Gd3+ accumulation was not washed out by 1 mM EGTA. The addition of ATP induced the release of 87% of the bound 153Gd3+, leaving behind irreversibly-accumulated 153Gd3+. Pre-incubation of the vesicles with lanthanides in the absence of ATP and oxalate inhibited 45Ca2+ uptake without affecting Ca2+-ATPase activity. The percent inhibition of 45Ca2+ uptake increased with length of pre-incubation of the vesicles with lanthanides, reaching 33% after 20 min of pre-incubation. Increasing the 45Ca2+ concentration or adding ATP or oxalate to the preincubation medium abolished these inhibitory effects on 45Ca2+ uptake.  相似文献   

11.
On addition of ATP to vesicles derived from the sarcoplasmic reticulum (SR) of skeletal muscle, Ca2+ is accumulated from the external medium. Following uptake, spontaneous release of Ca2+ occurs in the presence or in the absence of ATP. These processes of Ca2+ uptake and release were simulated by using the models derived for ATPase activity [Gould, East, Froud, McWhirter, Stefanova & Lee (1986) Biochem. J. 237, 217-227; Stefanova, Napier, East & Lee (1987) Biochem. J. 245, 723-730] and for Ca2+ release from passively loaded vesicles [McWhirter, Gould, East & Lee (1987) Biochem. J. 245, 713-722]. The simulations are consistent with measurements of the effects of pH, K+, Ca2+ and Mg2+ on uptake and release of Ca2+. The increase in maximal Ca2+ accumulation observed in the presence of maleate is explained in terms of complexing of Ca2+ and maleate within the SR. The calculated concentration of ADP generated by hydrolysis of ATP has a large effect on the simulations. The effects of an ATP-regenerating system on the measured Ca2+ uptake is explained in terms of both removal of ADP and precipitation of Ca3(PO4)2 within the vesicles. It is concluded that both the process of Ca2+ uptake and the process of Ca2+ release seen with SR vesicles can be interpreted quantitatively in terms solely of the properties of the Ca2+ + Mg2+-activated ATPase.  相似文献   

12.
Chronic excitation, at 2 Hz for 6-7 weeks, of the predominantly fast-twitch canine latissimus dorsi muscle promoted the expression of phospholamban, a protein found in sarcoplasmic reticulum (SR) from slow-twitch and cardiac muscle but not in fast-twitch muscle. At the same time that phospholamban was expressed, there was a switch from the fast-twitch (SERCA1) to the slow-twitch (SERCA2a) Ca(2+)-ATPase isoform. Antibodies against Ca(2+)-ATPase (SERCA2a) and phospholamban were used to assess the relative amounts of the slow-twitch/cardiac isoform of the Ca(2+)-ATPase and phospholamban, which were found to be virtually the same in SR vesicles from the slow-twitch muscle, vastus intermedius; cardiac muscle; and the chronically stimulated fast-twitch muscle, latissimus dorsi. The phospholamban monoclonal antibody 2D12 was added to SR vesicles to evaluate the regulatory effect of phospholamban on calcium uptake. The antibody produced a strong stimulation of calcium uptake into cardiac SR vesicles, by increasing the apparent affinity of the Ca2+ pump for calcium by 2.8-fold. In the SR from the conditioned latissimus dorsi, however, the phospholamban antibody produced only a marginal effect on Ca2+ pump calcium affinity. These different effects of phospholamban on calcium uptake suggest that phospholamban is not tightly coupled to the Ca(2+)-ATPase in SR vesicles from slow-twitch muscles and that phospholamban may have some other function in slow-twitch and chronically stimulated fast-twitch muscle.  相似文献   

13.
Curcumin, an important inhibitor of carcinogenesis, is an inhibitor of the ATPase activity of the Ca(2+)-ATPase of skeletal muscle sarcoplasmic reticulum (SR). Inhibition by curcumin is structurally specific, requiring the presence of a pair of -OH groups at the 4-position of the rings. Inhibition is not competitive with ATP. Unexpectedly, addition of curcumin to SR vesicles leads to an increase in the rate of accumulation of Ca(2+), unlike other inhibitors of the Ca(2+)-ATPase that result in a reduced rate of accumulation. An increase in the rate of accumulation of Ca(2+) is seen in the presence of phosphate ion, which lowers the concentration of free Ca(2+) within the lumen of the SR, showing that the effect is not passive leak across the SR membrane. Rather, simulations suggest that the effect is to reduce the rate of slippage on the ATPase, a process in which a Ca(2+)-bound, phosphorylated intermediate releases its bound Ca(2+) on the cytoplasmic rather than on the lumenal side of the membrane. The structural specificity of the effects of curcumin on ATPase activity and on Ca(2+) accumulation is the same, and the apparent dissociation constants for the two effects are similar, suggesting that the two effects of curcumin could follow from binding to a single site on the ATPase.  相似文献   

14.
The caffeine-sensitive Ca2+ release pathway in skeletal muscle was identified and characterized by studying the release of 45Ca2+ from heavy sarcoplasmic reticulum (SR) vesicles and by incorporating the vesicles or the purified Ca2+ release channel protein complex into planar lipid bilayers. First-order rate constants for 45Ca2+ efflux of 1 s-1 were obtained in the presence of 1-10 microM free Ca2+ or 2 X 10(-9) M free Ca2+ plus 20 mM caffeine. Caffeine- and Ca2+-induced 45Ca2+ release were potentiated by ATP and Mg.ATP, and were both inhibited by Mg2+. Dimethylxanthines were similarly (3,9-dimethylxanthine) or more (1,7-, 1,3-, and 3,7-dimethylxanthine) effective than caffeine in increasing the 45Ca2+ efflux rate. 1,9-Dimethylxanthine and 1,3-dimethyluracil (which lacks the imidazole ring) did not appreciably stimulate 45Ca2+ efflux. Recordings of calcium ion currents through single channels showed that the Ca2+- and ATP-gated SR Ca2+ release channel is activated by addition of caffeine to the cis (cytoplasmic) and not the trans (lumenal) side of the channel in the bilayer. The single channel measurements further revealed that caffeine activated Ca2+ release by increasing the number and duration of open channel events without a change of unit conductance (107 pS in 50 mM Ca2+ trans). These results suggest that caffeine exerts its Ca2+ releasing effects in muscle by activating the high-conductance, ligand-gated Ca2+ release channel of sarcoplasmic reticulum.  相似文献   

15.
The distribution of lipophilic anion of phenyldicarbaundecarborane (PCB-) between water phase and fragments of sarcoplasmic reticulum (SR) from skeletal muscle was studied, using a bilayer lipid membrane (BLM) as a selective electrode. Addition of ATP leads to an increase in PCB- binding to SR vesicles. The ATP effect is totally reversible only in the presence of both EGTA and A23187. Chlorides, in contrast with oxalate and phosphate, do not reduce the ATP-dependent PCB- binding. Oxalate decreases also the energy-dependent extrusion of protons from SR into the medium. Preliminary incubation of SR fragments with calcium gluconate leads to a decrease in PCB- binding. Addition of ATP to purified Ca2+-ATPase is coupled with a release of PCB- and calcium from the enzyme. It is suggested that ATP-dependent binding of PCB- to SR membranes reflects calcium incorporation into the hydrophobic region of Ca2+-ATPase molecules.  相似文献   

16.
Membrane vesicles capable of energized Ca2+ pumping have been reconstituted from cardiac sarcoplasmic reticulum (SR). Cardiac SR was solubilized with Triton X-100 in a detergent to protein weight ratio of 0.8, and membranous vesicles were reconstituted by removal of detergent with Bio-Beads SM-2 (a neutral porous styrene-divinylbenzene copolymer). The reconstituted vesicles exhibited ATP-dependent oxalate-facilitated Ca2+ accumulation with rates and efficiency comparable to the best reconstituted skeletal muscle preparation (Ca2+-loading rate = 1.65 +/- 0.31 mumol mg-1 min-1, Ca2+-activated ATPase activity = 2.39 +/- 0.25 mumol mg-1 min-1, efficiency (Ca2+/ATP) = 0.69 +/- 0.09). Phospholamban in the reconstituted vesicles was phosphorylated with added catalytic subunit of cAMP-dependent protein kinase to almost the same extent as that in original vesicles. However, phosphorylation of phospholamban had no effect on the Ca2+ accumulation of the reconstituted vesicles. This is to be contrasted with a decrease in the half-maximal concentration of Ca2+ for Ca2+ accumulation (KCa) in the original vesicles from 1.35 +/- 0.08 microM to 0.75 +/- 0.12 microM by cAMP-dependent phosphorylation of phospholamban. On the other hand KCa for the reconstituted vesicles was about 0.5 microM and remained unchanged by phosphorylation, indicating that the Ca2+ pump in the reconstituted vesicles is already fully activated. These results suggest that in normal cardiac SR, phospholamban in the dephosphorylated state acts as a suppressor of the Ca2+ pump and that phosphorylation of phospholamban serves to reverse the suppression.  相似文献   

17.
Preincubation of sarcoplasmic reticulum (SR) with propranolol or tetracaine inhibits Ca2+ accumulation and stimulates ATPase activity by more than 2-fold. This effect is obtained only when the preincubation is carried out in the presence of ATP or other nucleoside triphosphates. The (ATP + drug)-induced inhibition of Ca2+ accumulation is pH-dependent, increasing as the pH rises above 7.5. The presence of micromolar concentrations of Ca2+ or Mg2+ during the preincubation prevents the inhibitory effect of ATP plus drug on Ca2+ accumulation or ATPase activity. The (ATP + drug) modification of SR vesicles resulted in stimulation of a rapid Ca2+ efflux from passively loaded vesicles. The ATP-dependent inhibition of Ca2+ accumulation by the drug is obtained with other local anaesthetics. The drug concentration required for 50% inhibition was 0.15 mM for dibucaine and 0.4 mM for both propranolol and tetracaine, whereas it was 5 mM, 8 mM and greater than 10 mM for lidocaine, benzocaine and procaine respectively. The heavy SR vesicles were only slightly affected by the incubation with propranolol or tetracaine in the presence of ATP, but their sensitivity increased markedly after storage at 0 degrees C for 24-48 h. These results suggest that propranolol and some local anaesthetics, in the presence of ATP, stimulate Ca2+ efflux by modifying a protein factor(s) rather than the phospholipid bilayer.  相似文献   

18.
In this study, we report that sphingosine is a potent inhibitor of sarcoplasmic reticulum (SR) calcium release. Evidence is presented demonstrating a direct effect of sphingosine on the SR ryanodine receptor. Calcium release from "skinned" rabbit skeletal muscle fibers and isolated junctional SR derived from the terminal cisternae (TC) was measured in response to caffeine, doxorubicin, 5'-adenylyl-beta,gamma-imidodiphosphate or calcium. Sphingosine inhibited caffeine-induced release in a dose-dependent manner with an IC50 of 0.1 microM for the single muscle fibers and 0.5 microM for the isolated TC vesicles. Near complete blockage of TC calcium release rate was observed with 3 microM sphingosine. Neither sphingomyelin nor sphingosylphosphorylcholine had any effect at the 3 microM level, suggesting that the sphingosine effect was specific. Doxorubicin-induced calcium release and spontaneous calcium release were also blocked by sphingosine. Sphingosine was also capable of stimulating calcium transport in the isolated TC vesicles without an effect on Ca-ATPase activity. Ruthenium red was not capable of substantial additional stimulation of calcium transport nor inhibition of calcium release beyond the action of sphingosine. Sphingosine's blockage of calcium release was not reversed by the protein kinase inhibitor, 1-(5-isoquinolinesulfonyl)-2- methylpiperazine dihydrochloride, suggesting that the action of sphingosine on calcium release was not dependent on ryanodine receptor phosphorylation. Sphingosine significantly increased (8-fold) the Kd for specific [3H]ryanodine binding to TC membranes and decreased the Bmax with a dose dependence similar to the inhibition of calcium release, but sphingosine did not affect the pCa tension relationship of skinned skeletal muscle fibers. These data are consistent with a direct effect of submicromolar sphingosine on the ryanodine receptor. Substantially higher concentrations of sphingosine (30-50 microM) or sphingosylphosphorylcholine (10-20 microM) were capable of inducing calcium release by themselves. Preliminary data indicate that the transverse tubule and not the SR contain substantial sphingomyelinase activity consistent with a transverse tubule source of sphingosine production. Considering that sphingosine is found in micromolar concentrations in some cells, our data indicate that sphingosine generated by the transverse tubule membranes may be a physiologically relevant mechanism for modulating SR calcium release.  相似文献   

19.
Using the rapid filtration technique to investigate Ca2+ movements across the sarcoplasmic reticulum (SR) membrane, we compare the initial phases of Ca2+ release and Ca2+ uptake in malignant hyperthermia susceptible (MHS) and normal (N) pig SR vesicles. Ca2+ release is measured from passively loaded SR vesicles. MHS SR vesicles present a 2-fold increase in the initial rate of calcium release induced by 0.3 microM Ca2+ (20.1 +/- 2.1 vs. 6.3 +/- 2.6 nmol mg-1 s-1). Maximal Ca2+ release is obtained with 3 microM Ca2+. At this optimal concentration, rate of Ca2+ efflux in absence of ATP is 55 and 25 nmol mg-1 s-1 for MHS and N SR, respectively. Ca(2+)-induced Ca2+ release is inhibited by Mg2+ in a dose-dependent manner for both MHS and N pig SR vesicles (K1/2 = 0.2 mM). Caffeine (5 mM) and halothane (0.01% v/v) increase the Ca2+ sensitivity of Ca(2+)-induced Ca2+ release. ATP (5 mM) strongly enhances the rate of Ca2+ efflux (to about 20-40-fold in both MHS and N pig SR vesicles). Furthermore, both types of vesicles do not differ in their high-affinity site for ryanodine (Kd = 12 nM and Bmax = 6 pmol/mg), lipid content, ATPase activity and initial rate of Ca2+ uptake (0.948 +/- 0.034 vs. 0.835 +/- 0.130 mumol mg-1 min-1 for MHS and N SR, respectively). Our results show that MH syndrome is associated to a higher rate of Ca2+ release in the earliest phase of the calcium efflux.  相似文献   

20.
Unidirectional calcium influx and efflux were evaluated in cardiac sarcoplasmic reticulum (SR) by 45Ca-40Ca exchange at steady state calcium uptake in the absence of calcium precipitating anions. Calcium efflux was partitioned into a pump-mediated efflux and a parallel passive efflux by separately measuring passive efflux referable to the steady state. Unidirectional and net ATP-ADP fluxes were measured using [3H]-ATP----ADP and [3H]-ADP----ATP exchanges. Methods are presented that take into account changing specific activities and sizes of the nucleotide pools during the measurement of nucleotide fluxes. The contribution of competent and incompetent vesicles to the unidirectional and net nucleotide fluxes was evaluated from the specific activity of these fluxes in incompetent vesicles and from the fraction of vesicles that were incompetent. The results indicate that, in cardiac SR, unidirectional calcium fluxes are larger than the unidirectional nucleotide fluxes contributed by competent vesicles. Because the net ATPase rate of competent vesicles is similar to the parallel passive efflux, it appears that cardiac SR Ca-ATPase tightly couples ATP hydrolysis to calcium transport even at static head, with a coupling ratio near 1.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号