首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
BACKGROUND: Zinc finger domains have traditionally been regarded as sequence-specific DNA binding motifs. However, recent evidence indicates that many zinc fingers mediate specific protein-protein interactions. For instance, several zinc fingers from FOG family proteins have been shown to interact with the N-terminal zinc finger of GATA-1. RESULTS: We have used NMR spectroscopy to determine the first structures of two FOG family zinc fingers that are involved in protein-protein interactions: fingers 1 and 9 from U-shaped. These fingers resemble classical TFIIIA-like zinc fingers, with the exception of an unusual extended portion of the polypeptide backbone prior to the fourth zinc ligand. [15N,(1)H]-HSQC titrations have been used to define the GATA binding surface of USH-F1, and comparison with other FOG family proteins indicates that the recognition mechanism is conserved across species. The surface of FOG-type fingers that interacts with GATA-1 overlaps substantially with the surface through which classical fingers typically recognize DNA. This suggests that these fingers could not contact both GATA and DNA simultaneously. In addition, results from NMR, gel filtration, and sedimentation equilibrium experiments suggest that the interactions are of moderate affinity. CONCLUSIONS: Our results demonstrate unequivocally that zinc fingers comprising the classical betabetaalpha fold are capable of mediating specific contacts between proteins. The existence of this alternative function has implications for the prediction of protein function from sequence data and for the evolution of protein function.  相似文献   

4.
5.
6.
7.
8.
9.
Classical (CCHH) zinc fingers are among the most common protein domains found in eukaryotes. They function as molecular recognition elements that mediate specific contact with DNA, RNA, or other proteins and are composed of a betabetaalpha fold surrounding a single zinc ion that is ligated by two cysteine and two histidine residues. In a number of variant zinc fingers, the final histidine is not conserved, and in other unrelated zinc binding domains, residues such as aspartate can function as zinc ligands. To test whether the final histidine is required for normal folding and the DNA-binding function of classical zinc fingers, we focused on finger 3 of basic Krüppel-like factor. The structure of this domain was determined using NMR spectroscopy and found to constitute a typical classical zinc finger. We generated a panel of substitution mutants at the final histidine in this finger and found that several of the mutants retained some ability to fold in the presence of zinc. Consistent with this result, we showed that mutation of the final histidine had only a modest effect on DNA binding in the context of the full three-finger DNA-binding domain of basic Krüppel-like factor. Further, the zinc binding ability of one of the point mutants was tested and found to be indistinguishable from the wild-type domain. These results suggest that the final zinc chelating histidine is not an essential feature of classical zinc fingers and have implications for zinc finger evolution, regulation, and the design of experiments testing the functional roles of these domains.  相似文献   

10.
K H Gardner  T Pan  S Narula  E Rivera  J E Coleman 《Biochemistry》1991,30(47):11292-11302
  相似文献   

11.
12.
Among heavy metals, whose toxicity cause a steadily increasing of environmental pollution, cadmium is of special concern due to its relatively high mobility in soils and potential toxicity at low concentrations. Given their ubiquitous role, zinc fingers domains have been proposed as mediators for the toxic and carcinogenic effects exerted by xenobiotic metals. To verify the structural effects of zinc replacement by cadmium in zinc fingers, we have determined the high resolution structure of the single Cys2His2 zinc finger of the Arabidopsis thaliana SUPERMAN protein (SUP37) complexed to the cadmium ion by means of UV–vis and NMR techniques. SUP37 is able to bind Cd(II), though with a dissociation constant higher than that measured for Zn(II). Cd‐SUP37 retains the ββα fold but experiences a global structural rearrangement affecting both the relative orientation of the secondary structure elements and the position of side chains involved in DNA recognition: among them Ser17 side chain, which we show to be essential for DNA binding, experiences the largest displacement. © 2011 Wiley Periodicals, Inc. Biopolymers 95: 801‐810, 2011.  相似文献   

13.
14.
15.
16.
17.
18.
Mutations in the autoimmune regulator protein AIRE1 cause a monogenic autosomal recessively inherited disease: autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). AIRE1 is a multidomain protein that harbors two plant homeodomain (PHD)-type zinc fingers. The first PHD finger of AIRE1 is a mutational hot spot, to which several pathological point mutations have been mapped. Using heteronuclear NMR spectroscopy, we determined the solution structure of the first PHD finger of AIRE1 (AIRE1-PHD1), and characterized the peptide backbone mobility of the domain. We performed a conformational analysis of pathological AIRE1-PHD1 mutants that allowed us to rationalize the structural impact of APECED-causing mutations and to identify an interaction site with putative protein ligands of the AIRE1-PHD1 domain. The structure unequivocally exhibits the canonical PHD finger fold, with a highly conserved tryptophan buried inside the structure. The PHD finger is stabilized by two zinc ions coordinated in an interleaved (cross-brace) scheme. This zinc coordination resembles RING finger domains, which can function as E3 ligases in the ubiquitination pathway. Based on this fold similarity, it has been suggested that PHD fingers might also function as E3 ligases, although this hypothesis is controversial. At variance to a previous report, we could not find any evidence that AIRE1-PHD1 has an intrinsic E3 ubiquitin ligase activity, nor detect any direct interaction between AIRE1-PHD1 and its putative cognate E2. Consistently, we show that the AIRE1-PHD1 structure is clearly distinct from the RING finger fold. Our results point to a function of the AIRE1-PHD1 domain in protein-protein interactions, which is impaired in some APECED mutations.  相似文献   

19.
20.
Using fluorescence and UV-vis spectroscopies and mass spectrometry, we demonstrated that the presence of physiological levels of reduced glutathione enhances the binding of Zn(II) to XPAzf, a Cys4 zinc finger peptide derived from the XPA protein, by means of formation of a ternary complex of a general formula ZnXPAzf[GSH]. Similar complexes were also indicated by ESI-MS for isostructural Co(II)- and Cd(II)-substituted XPAzf. The observed enhancement of the Zn(II) binding to XPAzf by a factor of 50 over the physiological range of GSH concentrations of 1-20 mM corresponds to a dissociation constant of GSH from the ZnXPAzf[GSH] complex of 0.05 μM. This effect may account for an apparent discrepancy between relatively low Zn(II) binding constants measured in vitro for many zinc fingers, and the requirement of tight Zn(II) binding enforced by intracellular zinc buffering by the thionein/metallothionein couple.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号