首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identification of a novel genetic element in Escherichia coli K-12.   总被引:45,自引:35,他引:10       下载免费PDF全文
Induction of the SOS repair processes of Escherichia coli K-12 caused a 14.4-kilobase species of circular deoxyribonucleic acid, called element e14, to be excised from the chromosome. To aid further characterization of this species, an 11.6-kilobase segment of e14 was inserted into the HindIII site of plasmid pBR313. To map e14 on the E. coli K-12 chromosome, the recombinant plasmid, pAG2, was used to transform a polA recipient, an event which required integration of pAG2 into the recipient chromosome. This recombinational event was dependent upon the region of homology between the incoming plasmid and the chromosome, as no transformants were scored when either a strain cured of the element was the recipient or pBR313 was the transforming deoxyribonucleic acid. Using these transformants, we have shown that e14 maps between the purB and pyrC loci near min 25. Several strains of E. coli K-12 were found to contain e14; however, one strain, Ymel trpA36, did not. In addition, e14 was found to be absent in both E. coli B/5 and E. coli C. The approach to mapping developed for this work could be used to map other fragments of E. coli deoxyribonucleic acid which have no known phenotype.  相似文献   

2.
Genetic Mapping of the minB Locus in Escherichia coli K-12   总被引:5,自引:4,他引:1       下载免费PDF全文
The minB (minicell production) locus of Escherichia coli K-12 was mapped by transduction using bacteriophage P1. minB is located at min 25.6, between purB (min 25.2) and dadR (min 25.8). The mapping was facilitated by the use of insertion zcf-236::Tn10, which is inserted at min 25.4.  相似文献   

3.
To establish the molecular basis of the chromosomal virulence genes of Shigella flexneri 2a (YSH6000), a Notl restriction map of the chromosome was constructed by exploiting Notl-linking clones, partial Notl digestion and DNA probes from various genes of Escherichia coli K-12. The map revealed at least three local differences in the placements of genes between YSH6000 and E. coli K-12. Using the additional Notl sites introduced by Tn5 insertion, nine virulence loci identified previously by random Tn5 insertions were physically mapped on the chromosome. To demonstrate the versatility of the Notl map in direct assignment of the virulence loci tagged by Tn5 to a known genetic region in E. coli K-12, the major class of avirulent mutants defective in the core structure of lipopolysaccharide (LPS) was examined for the sites of Tn5 insertions. The two Notl segments created by the Tn5 insertion in the Notl fragment were analysed by Southern blotting with two DNA probes for the 5' and 3' flanking regions of the rfa region, and shown to hybridize separately with each of them, confirming the sites of Tn5 in the rfa locus. This approach will facilitate direct comparison genetically mapped Tn5 insertion mutations of S. flexneri with genes physically determined in E. coli K-12.  相似文献   

4.
Attachment site of the genetic element e14.   总被引:5,自引:5,他引:5       下载免费PDF全文
The Escherichia coli K-12 genetic element, e14, contains a 216-base-pair region that is homologous to a portion of the host chromosome. This region serves as the integration site for the element. The 216-base-pair homology is interrupted by 28 mismatches distributed through the sequence. The actual integrative crossover occurs within the first 11 base pairs from one end of the region. To test factors which affect e14 site-specific recombination, we cloned the attachment sites of free e14 and the host chromosome into the same plasmid. The cloned attachment sites recombined intramolecularly in a process that required the presence of a chromosomal copy of e14 in the host cell as well as the induction of SOS. Recombination events that mimicked both integration and excision occurred under the same conditions and to roughly the same extent.  相似文献   

5.
6.
The conjugative transposon Tn916 (15 kilobases), originally identified in Streptococcus faecalis DS16, has been cloned as an intact element on the pBR322-derived vector pGL101 in Escherichia coli. The EcoRI F' (EcoRI F::Tn916) fragment of pAM211 (pAD1::Tn916) was cloned into the single EcoRI site of pGL101 to form the chimera, pAM120, by selecting for the expression of Tn916-encoded tetracycline resistance (Tcr). Interestingly, in the absence of continued selection for Tcr, Tn916 excised from pAM120 at high frequency. This excision event resulted in a plasmid species consisting of the pGL101 vector and a 2.7-kilobase restriction fragment comigrating with the EcoRI F fragment of pAD1 during agarose gel electrophoresis. Filter blot hybridization experiments showed the 2.7-kilobase fragment generated as a result of Tn916 excision to be homologous with the EcoRI F fragment of pAD1. Analogous results were obtained with another chimera, pAM170, generated by ligating the EcoRI D' (EcoRI D::Tn916) fragment of pAM210 (pAD1::Tn916) to EcoRI-digested pGL101. Comparison of the AluI and RsaI cleavage patterns of the EcoRI F fragment isolated after Tn916 excision with those from an EcoRI F fragment derived from pAD1 failed to detect any difference in the two fragments: data in support of a precise Tn916 excision event in E. coli. Subcloning experiments showed that an intact transposon was required for Tn916 excision and located the Tcr determinant near the single HindIII site on Tn916. Although excision occurred with high frequency in E. coli, Tn916 insertion into the E. coli chromosome was a much rarer event. Tcr transformants were not obtained when pAM120 DNA was used to transform a polA1 strain, E. coli C2368.  相似文献   

7.
Mutants of Escherichia coli K-12 deficient in pyruvate oxidase were isolated by screening for the production of 14CO2 from [1-14C]pyruvate by the method of Tabor et al. (J. Bacteriol. 128:485-486, 1976). One of these lesions (designated poxA) decreased the pyruvate oxidase activity to 10 to 15% of the normal level but grew well. To map this nonselectable mutation, we isolated strains having transposon Tn10 inserted into the chromosome close to the poxA locus and mapped the transposon. These insertions were isolated by the following procedure: (i) pools of Tn10 insertions into the chromosomes of two different Hfr strains were prepared by transposition from a lambda::Tn10 vector; (ii) these Tn10-carrying strains were then mated with a poxA recipient strain, and tetracycline-resistant (Tetr) recombinants were selected; (iii) the Tetr recombinants were then screened for 14CO2 production from [1-14C]pyruvate. This method was shown to give a greater than 40-fold enrichment of insertions of Tn10 near the poxA gene as compared with transduction. Calculations indicate that a similar enrichment should be expected for other genes. The enrichment is due to the much greater map interval over which strong linkage between selected and unselected markers is found in conjugational crosses as compared with transductional crosses. The use of Hfr conjugative transfer allows isolation of transposon insertions closely linked to a nonselectable gene by scoring hundreds rather than thousands of colonies. Using a Tn10 insertion greater than 98% cotransduced with the poxA locus, we mapped the poxA gene on the E. coli genetic map. The poxA locus is located at 94 min, close to the psd locus. The clockwise gene order is ampA, poxA, psd, purA. The poxA mutation is recessive and appears to be a regulatory gene.  相似文献   

8.
Separate regulation of purA and purB loci of Escherichia coli K-12.   总被引:7,自引:6,他引:1       下载免费PDF全文
We isolated a strain of Escherichia coli K-12 in which the lac structural genes are fused to the purB control region and used this strain to study the regulation of the purA and purB loci. The purA locus was derepressed in response to either limiting adenine or guanine growth conditions in the presence of excess guanine or adenine, respectively. The presence of hypoxanthine in the culture medium did not have any effect on the expression of the purA locus. The purB locus responded to limiting adenine growth conditions in the presence of either excess hypoxanthine or guanine alone but not when both hypoxanthine and guanine were present.  相似文献   

9.
L A Gukova  I D Avdienko 《Genetika》1978,14(7):1278-1280
The contransduction frequency of MAAs, UVs phenotype of Escherichia coli HfrC7 and its 7-51F- derivative with purE markers is found to be 1-2% which indicates that the mutation N 7 is located close to the F integration site in HfrC strain. E. coli strains K-12 7-51F+ and 7-51ColV2+ transfer chromosome markers in the same direction as does HfrC strain. The results suggest the presence of an integrated F fragment (sfa locus) into K-12 7-51F- chromosome.  相似文献   

10.
Escherichia coli C strains can grow at the expense of the two natural pentitols ribitol and D-arabitol, sugar alcohols previously thought not to be utilized by E. coli. E. coli strains K-12 and B cannot utilize either compound. The genetic loci responsible for pentitol catabolism in E. coli C, designated rtl and atl, are separate and closely linked. Each lies between metG and his and is highly co-transducible with metG and with a P2 prophage attachment site. rtl and atl readily can be transduced into E. coli K-12 or B strains, in which they integrate at, or very near, their E. coli C location. Transduction also can be used to insert rtl and atl into certain E. coli K-12 F' plasmids. No recombination between E. coli C strains and either K-12 or B strains occurs within the rtl-atl genetic region after interstrain conjugations or transductions. No cryptic rtl or atl genes in K-12 or B strains can be detected by complementation, recombination, or mutagenesis. These results are consistent with the view that the rtl-atl portion of the E. coli C chromosome has no counterpart in E. coli K-12 or B and may have been obtained from an extrageneric source. Detailed biochemical and genetic comparisons of penitol utilization in E. coli and Klebsiella aerogenes are in progress. The ability to catabolize xylitol is conferred upon E. coli C strains by a mutation at or adjacent to the rtl locus, whereas in E. coli K-12 or B strains harboring rtl an additional mutation at a separate locus is required for xylitol utilization.  相似文献   

11.
Transposon Tn10 was used to mutagenize the fadR gene in Escherichia coli. Mutants bearing fadR:Tn10 insertion mutations were found to (i) utilize the noninducing fatty acid decanoate as sole carbon source, (ii) beta-oxidize fatty acids at constitutive rates, and (iii) contain constitutive levels of the five key beta-oxidative enzymes. These characteristics were identical to those observed in spontaneous fadR mutants. The constitutive phenotype presented by the fadR:Tn10 mutants was shown to be genetically linked to the associated transposon-encoded drug resistance. These results suggest that the fadR gene product exerts negative control over the fatty acid degradative regulon. The fadR gene of E. coli has been mapped through the use of transposon-mediated fadR insertion mutations. The fadR locus is at 25.5 min on the revised map and cotransduces with purB, hemA, and trp. Three-factor conjugational and transductional crosses indicate that the order of loci in this region of the chromosome is purB-fadR-hemA-trp. Spontaneous fadR mutants were found to map at the same location. Strains that exhibit alterations in the control of the fad regulon in response to changes in temperature were also isolated and characterized. These fadR(Ts) mutants were constitutive for the fad enzymes at elevated temperatures and inducible for these activities at low temperatures. The fadR(Ts) mutations also map at the fadR locus. These results strongly suggest that the fadR gene product is a repressor protein.  相似文献   

12.
We cloned and sequenced the sohB gene of Escherichia coli. The temperature-sensitive phenotype of bacteria that carry a Tn10 insertion in the htrA (degP) gene is relieved when the sohB gene is present in the cell on a multicopy plasmid (30 to 50 copies per cell). The htrA gene encodes a periplasmic protease required for bacterial viability only at high temperature, i.e., above 39 degrees C. The sohB gene maps to 28 min on the E. coli chromosome, precisely between the topA and btuR genes. The gene encodes a 39,000-Mr precursor protein which is processed to a 37,000-Mr mature form. Sequencing of a DNA fragment containing the gene revealed an open reading frame which could encode a protein of Mr 39,474 with a predicted signal sequence cleavage site between amino acids 22 and 23. Cleavage at this site would reduce the size of the processed protein to 37,474 Mr. The predicted protein encoded by the open reading frame has homology with the inner membrane enzyme protease IV of E. coli, which digests cleaved signal peptides. Therefore, it is possible that the sohB gene encodes a previously undiscovered periplasmic protease in E. coli that, when overexpressed, can partially compensate for the missing HtrA protein function.  相似文献   

13.
From a collection of kanamycin-resistant mutants of Escherichia coli K-12 isolated by transposon Tn5 mutagenesis, we have identified a mutant that lacks functional biodegradative threonine dehydratase (EC 4.2.1.16) by direct enzyme assay and by the loss of cross-reacting material with affinity-purified antibodies against the purified enzyme. Aerobic and anaerobic growth of this strain on various carbon sources failed to reveal a phenotype. Evidence for the insertional inactivation of threonine dehydratase by Tn5 was obtained by cloning the DNA segments flanking the Tn5 insertion site into pBR322 and hybridizing the cloned DNA to a synthetic oligodeoxynucleotide probe complementary to the DNA segment coding for a unique hexapeptide at the amino terminus end of the enzyme; the region of homology to the synthetic cDNA sequence appears to be located within about 500 nucleotides from one end of Tn5. Genetic analysis with the transposon element that caused insertional inactivation located the tdc gene at min 67 on the E. coli chromosome.  相似文献   

14.
A gene library for Clostridium acetobutylicum NCIB 2951 was constructed in the broad-host-range cosmid pLAFR1, and cosmids containing the beta-galactosidase gene were isolated by direct selection for enzyme activity on X-Gal (5-bromo-4-chloro-3-indolyl-beta-D-galactoside) plates after conjugal transfer of the library to a lac deletion derivative of Escherichia coli. Analysis of various pSUP202 subclones of the lac cosmids on X-Gal plates localized the beta-galactosidase gene to a 5.1-kb EcoRI fragment. Expression of the Clostridium beta-galactosidase gene in E. coli was not subject to glucose repression. By using transposon Tn5 mutagenesis, two gene loci, cbgA (locus I) and cbgR (locus II), were identified as necessary for beta-galactosidase expression in E. coli. DNA sequence analysis of the entire 5.1-kb fragment identified open reading frames of 2,691 and 303 bp, corresponding to locus I and locus II, respectively, and in addition a third truncated open reading frame of 825 bp. The predicted gene product of locus I, CbgA (molecular size, 105 kDa), showed extensive amino acid sequence homology with E. coli LacZ, E. coli EbgA, and Klebsiella pneumoniae LacZ and was in agreement with the size of a polypeptide synthesized in maxicells containing the cloned 5.1-kb fragment. The predicted gene product of locus II, CbgR (molecular size, 11 kDa) shares no significant homology with any other sequence in the current DNA and protein sequence data bases, but Tn5 insertions in this gene prevent the synthesis of CbgA. Complementation experiments indicate that the gene product of cbgR is required in cis with cbgA for expression of beta-galactosidase in E. coli.  相似文献   

15.
In Escherichia coli K-12, the phoE gene, encoding a phosphate-limitation-inducible outer membrane pore protein (PhoE), is closely linked to the genes proA and proB. When the corresponding fragment of the Salmonella typhimurium chromosome was transferred to E. coli K-12 using an RP4::miniMu plasmid, pULB113, no production of S. typhimurium PhoE could be detected. Nevertheless, DNA hybridization studies revealed that the corresponding plasmid did contain S. typhimurium phoE. Production of S. typhimurium PhoE in E. coli was detected only after subcloning the gene in a multicopy vector. Nucleotide (nt) sequence analysis showed extensive homology of S. typhimurium phoE to the E. coli gene and suggested possible explanations for the low expression of S. typhimurium phoE in E. coli. In addition, the sequence information was used to develop Salmonella-specific DNA probes. Two oligodeoxyribonucleotides were synthesized based on nt sequences encoding the fifth and eighth cell-surface-exposed regions of PhoE. When used in polymerase chain reactions, these probes turned out to be specific, i.e., no crossreactions occurred with the non-Salmonella strains, whereas 132 out of 133 tested Salmonella strains were recognized.  相似文献   

16.
Delivery vectors for mini-Tn10 transposons function in Bacillus subtilis (M. A. Petit, C. Bruand, L. Janniére, and S. D. Ehrlich, J. Bacteriol. 172:6736-6740, 1990). Using this system, we identified a new gene (sytA) whose inactivation affected regulation of genes of sucrose metabolism. For cloning the sytA::Tn10 insertion in Escherichia coli, we developed a methodology similar to that commonly used for B. subtilis Tn917 insertions. We constructed a plasmid which can be used to insert (by in vivo recombination) a ColE1 origin linked to a spectinomycin resistance gene (ori-spc element) into mini-Tn10 transposons inserted into the B. subtilis chromosome. DNA extracted from a sytA::Tn10::ori-spc transformant was cut with restriction enzymes that do not cut into the Tn10::ori-spc sequence; plasmids containing the sytA::Tn10 insertion were cloned by self-ligation, followed by transformation of E. coli. To obtain the wild-type sytA region, one of these plasmids was ligated with an E. coli-B. subtilis shuttle vector conferring erythromycin resistance, and the hybrid was used to transform the wild-type B. subtilis strain. Erythromycin-resistant transformants, detected as spectinomycin sensitive, resulted from conversion of the insertion mutation by the resident wild-type locus. The shuttle plasmid containing the wild-type locus could then be recovered in E. coli.  相似文献   

17.
sn-Glycerol-3-phosphate auxotrophs defective in phospholipid synthesis contain a Km-defective sn-glycerol-3-phosphate acyltransferase. Detailed genetic analysis revealed that two mutations were required for the auxotrophic phenotype. One mutation, in the previously described plsB locus (sn-glycerol-3-phosphate acyltransferase structural gene), mapped near min 92 on the Escherichia coli linkage map. Isolation of Tn10 insertions cotransducible with the auxotrophy in phage P1 crosses revealed that a second mutation was required with plsB26 to confer the sn-glycerol-3-phosphate auxotrophic phenotype. This second locus, plsX, mapped between pyrC and purB near min 24 on the E. coli linkage map. Tn10 insertions near plsX allowed detailed mapping of the genetic loci in this region. A clockwise gene order putA pyrC flbA flaL flaT plsX fabD ptsG thiK purB was inferred from results of two- and three-factor crosses. Strains harboring the four possible configurations of the mutant and wild-type plsB and plsX loci were constructed. Isogenic plsB+ plsX+, plsB+ plsX50, and plsB26 plsX+ strains grew equally well on glucose minimal medium without sn-glycerol-3-phosphate. In addition, plsX or plsX+ had no apparent effect on sn-glycerol-3-phosphate acyltransferase activity measured in membrane preparations. The molecular basis for the plsX requirement for conferral of sn-glycerol-3-phosphate auxotrophy in these strains remains to be established.  相似文献   

18.
The DNA hybridization procedure of Southern has been used to search for homology between the transposable kanamycin resistance determinant Tn5 and sequences in the chromosome of Escherichia coli K-12. No homology was detected under conditions in which a segment homologous to 5% or more of the 5,300-base pair Tn5 element would have been seen.  相似文献   

19.
The Gin product catalyzes an inversion of 3,000 base pairs of DNA in the genome of bacteriophage Mu. The orientation of the invertible of G-region determines the host range of the phage. Gin- mutants are complemented by a host function in strain HB101 and several other Escherichia coli K-12 strains. At least three clones in the E. coli gene bank described previously (L. Clarke and J. Carbon, Cell 9:91-99, 1976) contained the gin complementing function. This function, which we named pin, catalyzes an inversion of 1,800 base pairs in the adjacent DNA. The invertible region, named the P-region, together with pin, was further subcloned on pBR322. Conjugation and transduction experiments mapped the pin gene between the genes purB and fabD near position 25 on the E. coli chromosome. Also situated in this region is e14, a cryptic, UV- excisable , genetic element (A. Greener and C.W. Hill, J. Bacteriol . 144:312-321, 1980). We demonstrated that pin and the P-region are part of e 14. The e 14 element was cloned on pBR322 by genetic manipulation techniques in vivo. It has the properties of a defective prophage containing integration and excision functions and a SOS-sensitive repressor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号