首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deletion mutants of the rabbit progesterone receptor were used to identify two major mechanisms of its nuclear localization. A putative signal sequence, homologous to that of the SV40 large T antigen, was localized around amino acids 638–642 and was shown to be constitutively active. When amino acids 638–642 were deleted, the receptor became cytoplasmic but could be shifted into the nucleus by the addition of hormone (or antihormone), it was almost fully active. A second putative nuclear localization signal is located in the DNA binding domain activated either through ligand binding or through production of constitutive receptor. By deleting epitopes recognized by monoclonal antibodies, it was possible to follow different receptor mutants inside the same cells. In the absence of ligand the receptor was transferred into the nucleus as a monomer. After administration of hormone (or antihormone) a “cytoplasmic” monomer was transferred into the nucleus through interaction with a “nuclear” monomer. These interactions occurred through the steroid binding domains of both monomers.  相似文献   

2.
Previous studies on glucocorticoid receptors have suggested the existence of interactions between the receptor and microtubule or actin networks. It was hypothesized that such interactions may contribute to the guidance of steroid hormone receptors towards the nucleus. We used a permanent L cell line expressing the delta 638-642 progesterone receptor. This mutant has all the characteristics of the wild type receptor except that the deletion of five amino acids inactivates the constitutive karyophilic signal. Consequently, the receptor is cytoplasmic in the absence of hormone but is shifted into the nucleus when administration of hormone activates the second karyophilic signal. Optical microscopy and confocal laser microscopy were used in intact cells or in cells depleted of soluble elements by permeabilization with detergents. By immunofluorescence, the receptor was found to be mainly concentrated in the perinuclear area. A small fraction of progesterone receptor (PR) persisted in this region after Triton X100 treatment. These observations suggested that the receptor could interact with some insoluble constituent(s) of the cytoplasm. However, careful colocalization studies showed that this heterogenous distribution was not due to interactions with microtubule, microfilament, or intermediate filament networks. Functional involvement of these networks in the translocation of the receptor into the nucleus was studied after cell treatment with cytoskeletal drugs such as nocodazole, demecolcine and cytochalasin. None of these compounds prevented or even delayed the hormone-dependent transfer of delta 638-642 PR into the nucleus. Similar conclusions were reached with the wild type receptor expressed by transfection in Cos-7 cells. PR was shifted from the nucleus into the cytoplasm by administration of energy-depleting drugs. After disruption of the various cytoskeletal networks normal nuclear reaccumulation of the receptor was observed when these drugs were removed. The results thus suggest that the progesterone receptor is not colocalized with the main cytoskeletal components. Disruption of the cytoskeletal networks does not prevent its nuclear translocation. Thus, karyophilic signals and interactions with the nuclear pore seem to be the primary determinants of the cellular traffic of the progesterone receptor.  相似文献   

3.
4.
5.
Phosphorylation of transfected wild type and mutated progesterone receptors   总被引:2,自引:0,他引:2  
An expression vector encoding wild type or mutated forms of the rabbit progesterone receptor was transfected into COS-7 cells and phosphorylation was studied by incubation with 32Pi followed by specific immunoprecipitation. The features of phosphorylation of the wild type receptor were identical to those previously observed in uterine cells: there was a basal level of phosphorylation which was increased approximately 7-fold by incubation with the hormone. The hyperphosphorylated receptor had decreased electrophoretic mobility ("upshift"). These experiments thus showed that the presence of the receptor specific kinase is not restricted to the target cells. Cleavage of the receptor by hydroxylamine and cyanogen bromide, and use of receptor mutants deleted in the N-terminal region, showed the absence of any detectable phosphorylation downstream from amino acid 520 (thus in the DNA and steroid binding domains). The majority of the phosphorylation sites were localized between amino acids 166 and 520. This localization was similar for basal and hormone-induced phosphorylation. DNA binding and hormone-induced hyperphosphorylation were not directly related, since deletion of the first zinc finger provided a hyperphosphorylated receptor. We showed that the constitutive receptor (totally deleted in the steroid binding region) exhibited only a low basal level of phosphorylation, and antagonist RU 486-receptor complexes were found to be hyperphosphorylated, leading us to conclude that the active form of the receptor was not the hyperphosphorylated one. Moreover receptor down regulation and hormone-induced receptor hyperphosphorylation were two independent phenomena. Basal phosphorylation was observed for both cytoplasmic and nuclear mutants, whereas nuclear localization was necessary but not sufficient for hyperphosphorylation. Finally, the second finger region and the hormone binding domain, which are necessary for receptor hyperphosphorylation, may be involved in the hormonally induced increased affinity of the receptor toward its kinase.  相似文献   

6.
The human fibroblast interleukin 1 (IL-1) receptor is a glycosylated transmembrane protein with a cytoplasmic domain of 213 amino acids. We have constructed a series of deletion mutants of the cytoplasmic region of the IL 1 receptor and have used these mutants to examine its role in ligand binding, internalization, signal transduction, and nuclear localization of IL-1. Mutant receptors lacking most of the cytoplasmic domain are expressed at the cell surface and can bind, internalize, and localize IL-1 at the nucleus, but they do not allow IL-1-mediated induction of interleukin 2 and SV40 promoters. We have localized a critical region for signal transduction to a 50-amino acid segment of the cytoplasmic domain of the receptor. These studies demonstrate that IL-1 internalization and nuclear localization are not sufficient to trigger IL-1 activation of gene expression in T-cells.  相似文献   

7.
After exposure of fetal rabbit lungs to glucocorticoid in vivo or in vitro, the hormone binds to specific receptors localized in the cytoplasm and in the nuclei. The present studies are compatible with a mechanism by which the nuclear receptor originates from the cytoplasm and arises from a hormone-, temperature-, and ionic strength-dependent transfer of the cytoplasmic receptor into the nucleus. This conclusion is reached from the following observations. Specific binding of glucocorticoid to nuclei from lungs not previously exposed to the hormone is not observed unless the cytosol is also present. In the presence of cytosol, nuclear uptake of the hormone is very slow at 0 degrees but is highly enhanced with increasing temperature. Concomitantly with the increased nuclear uptake there is an equiivalent loss of glucocortoid-receptor complex from the cytosol, indicating that the complex is transferred to the nuclei by a temperature-dependent process. Although the nuclei do not bind the cytoplasmic complex at 0 degrees, they do so provided that the cytosol is briefly heated in the presence of hormone prior to mixing with the nuclei. Thus the cytoplasmic complex must first be activated before it can bind to nuclei..  相似文献   

8.
The LH/CG receptor is a member of the family of G protein-coupled receptors and consists of a large N-terminal extracellular domain (which is responsible for binding hormone) attached to a region that spans the plasma membrane seven times, ending with an intracellularly located C-terminus. Binding of LH or human CG (hCG) to the LH/CG receptor causes a stimulation of adenylyl cyclase, presumably via activation of Gs. The binding of hormone also leads to its subsequent internalization by receptor-mediated endocytosis. In order to investigate the role of the cytoplasmic tail of this receptor in these events, we prepared a series of mutants in which progressively larger portions of the cytoplasmic tail were deleted. Deletion of 58 amino acids from the C-terminus, in which only 11 cytoplasmic residues remain, resulted in a receptor that was not expressed on the plasma membrane. Receptors rat LHR (rLHR)-t653 and rLHR-t631, in which 21 or 43 amino acids were removed, respectively, were properly expressed. These results suggest that a region(s) between residues 616 and 631 of the rLH/CG receptor are required for proper insertion and/or targeting of the receptor into the plasma membrane. Cells expressing rLHR-t653 or rLHR-t631 bound hCG with the same high affinity as cells expressing the full-length receptor, and basal levels of cAMP were the same among the cells. However, cells expressing the truncated receptors responded to hCG with approximately 2-fold greater levels of maximal cAMP accumulation than cells expressing the full-length receptor. Deletion of up to 43 amino acids from the C-terminus of the rLH/CG receptor had no deleterious effect on hCG internalization. In fact, mutants lacking 21 and 43 amino acids exhibited progressively faster rates of hCG internalization as compared to the full-length receptor. Once internalized, hCG was also degraded at a faster rate in cells expressing the truncated LH/CG receptors. Since hCG-stimulated cAMP stimulation and hCG internalization are retained by rLHR-t631, it can be concluded that the residues, not necessarily the same, required for these functions reside within the 26 amino acids of the cytoplasmic tail closest to the seventh transmembrane helix and/or residues within the intracellular loops. Our data show, however, that both hCG-stimulated cAMP production and hCG internalization are enhanced by the removal of the distal portion of the cytoplasmic tail.  相似文献   

9.
Nature of Oestrogen Specific Binding Sites in the Nuclei of Mouse Uteri   总被引:7,自引:0,他引:7  
IT is widely accepted that the rodent uterus when exposed to oestradiol-17β either in vivo or in vitro interacts with a specific receptor molecule and that this interaction does not involve a chemical transformation of the steroid1,2. Initially, the hormone binds to a protein in the cytoplasm to yield an oestradiol-receptor complex sedimenting in the region of 8S on sucrose gradients3,4. Then, by a temperature dependent process, the bound hormone is transferred to the nucleus where it becomes associated with the chromatin fraction5,6. Therefore, at least one function of oestrogen seems to be to activate the specific cytoplasmic uterine receptor to enter the nucleus and the nature of this nuclear binding is important in elucidating the mechanism of oestrogen action on a molecular basis.  相似文献   

10.
The nonactivated progesterone receptor is a nuclear heterooligomer   总被引:6,自引:0,他引:6  
The discovery of the nuclear localization of estradiol and progesterone receptors in the absence of the steroid hormone has led to reconsideration of the model of cytoplasmic to nuclear translocation of these receptors upon exposure to hormone. Unoccupied nonactivated receptors are thought to be weakly bound to nuclei of target cells from which they are leaking during tissue fractionation and thus found in the cytosol fraction of homogenates in a nontransformed heterooligomeric "8-9 S" form, which includes hsp90. However, no direct biochemical evidence has yet been obtained for the presence of such heterooligomers in the target cell nucleus, possibly because it dissociates in high ionic strength medium used for extraction of the nuclear receptor. We took advantage of the combined stabilizing effects of tungstate ions and antiprogestin RU486 to extract a nuclear non-DNA binding nontransformed 8.5 S-RU486-progesterone receptor complex from estradiol-treated immature rabbit uterine explants incubated with the antagonist. As demonstrated by immunological criteria and by irreversible cross-linking with dimethylpimelimidate, the complex contained, in addition to the hormone binding unit, hsp90, and p59, another nonhormone binding protein. Control experiments carried out with the progestin R5020 yielded the expected nuclear transformed DNA binding 4.5 S-R5020-progesterone receptor complex. These results offer evidence for two distinct forms of steroid receptor in target cell nuclei. Besides the classical "4 S" agonist-receptor complex, tightly bound to the DNA-chromatin structure and in all probability able to trigger the hormonal response, we have observed in the RU486-bound state a non-DNA binding nontransformed 8.5 S form, presumably already present in the nucleus in the absence of hormone and representing the native nonactive form of the receptor.  相似文献   

11.
Nuclear import and export of influenza virus nucleoprotein.   总被引:11,自引:4,他引:7       下载免费PDF全文
Influenza virus nucleoprotein (NP) shuttles between the nucleus and the cytoplasm. A nuclear localization signal (NLS) has been identified in NP at amino acids 327 to 345 (J. Davey et al., Cell 40:667-675, 1985). However, some NP mutants that lack this region still localize to the nucleus, suggesting an additional NLS in NP. We therefore investigated the nucleocytoplasmic transport of NP from influenza virus A/WSN/33 (H1N1). NP deletion constructs lacking the 38 N-terminal amino acids, as well as those lacking the 38 N-terminal amino acids and the previously identified NLS, localized to both the cytoplasm and the nucleus. Nuclear localization of a protein containing amino acids 1 to 38 of NP fused to LacZ proved that these 38 amino acids function as an NLS. Within this region, we identified two basic amino acids, Lys7 and Arg8, that are crucial for NP nuclear import. After being imported into the nucleus, the wild-type NP and the NP-LacZ fusion construct containing amino acids 1 to 38 of NP were both transported back to the cytoplasm, where they accumulated. These data indicate that NP has intrinsic structural features that allow nuclear import, nuclear export, and cytoplasmic accumulation in the absence of any other viral proteins. Further, the information required for nuclear import and export is located in the 38 N-terminal amino acids of NP, although other NP nuclear export signals may exist. Treatment of cells with a protein kinase C inhibitor increased the amounts of nuclear NP, whereas treatment of cells with a phosphorylation stimulator increased the amounts of cytoplasmic NP. These findings suggest a role of phosphorylation in nucleocytoplasmic transport of NP.  相似文献   

12.
Transfection of the insulin-producing rat islet tumor cell line RIN-5AH with a full length cDNA of the rat hepatic growth hormone (GH) receptor (GH-R1-638) augments the GH-responsive insulin synthesis in these cells. Using this functional system we analyzed the effect of COOH-terminal truncation of the GH receptor. Two mutated cDNAs encoding truncated GH receptors, GH-R1-294 and GH-R1-454, respectively, were generated by site-directed mutagenesis and transfected into the RIN cells. Both receptor mutants were expressed on the cell surface and displayed normal GH binding affinity. Whereas GH-R1-638 had a molecular mass of about 110 kDa, GH-R1-294 and GH-R1-454 showed molecular masses of 49 and 80 kDa, respectively. Cells expressing GH-R1-454 internalized GH to a similar extent as cells transfected with the full length receptor and the parent cell line, but GH-R1-294-expressing cells showed a markedly reduced capability of GH internalization. In contrast to cells transfected with GH-R1-638, none of the cell lines expressing truncated GH receptors exhibited any increase of the GH-stimulated insulin production. We conclude that domains within the COOH-terminal half of the cytoplasmic part of the GH receptor are required for transduction of the signal for GH-stimulated insulin synthesis, whereas cytoplasmic domains proximal to the transmembrane region are involved in receptor-mediated GH internalization.  相似文献   

13.
It is known that Fas death domain-associated protein (Daxx) possesses both putative nuclear and cytoplasmic functions. However, the nuclear transport mechanism is largely unknown. This study examined the nuclear location signal (NLS) of Daxx and whether the nuclear transport of Daxx was mediated by small ubiquitin-related modifier (SUMO). Two NLS motifs of Daxx, leucine (L)-rich nuclear export signal (NES)-like motif (188IXXLXXLLXL197) and C-terminal lysine (K) rich NLS2 (amino acids 627-634) motif, were identified and the K630 and K631 on the NLS2 motif were characterized as the major sumoylation sites of Daxx by in vitro sumoylation analysis. Proteins of inactive SUMO (SUMO-delta), a sumoylation-incompetent mutant, and Daxx NLS mutants (Daxx-NES(mut) and Daxx NLS2(mut)) were dispersed in cytoplasm. The cytoplasmic dispersed Daxx mutants could be relocalized to nucleus by cotransfection with active SUMO, but not with inactive SUMO-delta, demonstrating the role of SUMO on regulating the cytoplasmonuclear transport of Daxx. However, inactive SUMO-delta could also be relocalized to nucleus during cotransfection with wild-type Daxx, suggesting that SUMO regulation of the cytoplasmonuclear transport of its target protein Daxx does not need covalent modification. This study shows that cytoplasmic SUMO has a biological role in enhancing the cytoplasmonuclear transport of its target protein Daxx and it may be done through the non-sumoylation interactions.  相似文献   

14.
15.
Extracellular signal-regulated kinase 2 (ERK2) is located in the cytoplasm of resting cells and translocates into the nucleus upon extracellular stimuli by active transport of a dimer. Passive transport of an ERK2 monomer through the nuclear pore is also reported to coexist. We attempted to characterize the cytoplasmic retention and nuclear translocation of fusion proteins between deletion and site-directed mutants of ERK2 and green fluorescent protein (GFP). The overexpressed ERK2-GFP fusion protein is usually localized to both the cytoplasm and the nucleus unless a cytoplasmic anchoring protein is coexpressed. Deletion of 45 residues, but not 43 residues, from the C terminus of ERK2 prevented the nuclear distribution of the ERK2-GFP fusion protein. Substitution of a part of residues 299-313 to alanine residues also prevented the nuclear distribution of the ERK2-GFP fusion protein without abrogation of its nuclear active transport. These observations may indicate that the passive diffusion of ERK2 into the nucleus is not simple diffusion but includes a specific interaction process between residues 299-313 and the nuclear pore complex and that this interaction is not required for the active transport. We also showed that substitution of Tyr(314) to alanine residue abrogated the cytoplasmic retention of the ERK2-GFP fusion protein by PTP-SL but not by MEK1.  相似文献   

16.
17.
Nuclear localization of the rat glucocorticosteroid receptor (rGR) transiently expressed in COS-7 cells appears to be mediated by two nuclear localization signals, NL1 and NL2, in a hormone-dependent mechanism. We investigated the intracellular distribution of the human GR (hGR) expressed in COS-7 cells, by a different immunohistochemical technique involving immunostaining of cell pellet sections, thus avoiding the use of cell permeabilizing agents and allowing rigorous comparison between successive experiments. With a large set of hGR mutants, we could define determinants of the hGR nuclear localization and compare them with those previously reported for rGR. Our study demonstrated two hormone-dependent nuclear localization signals. NL1 activity, overlapping the DNA-binding domain (DBD)-hinge boundary, was repressed by the unliganded ligand-binding domain (LBD), even if the repressed NL1 retained a residual potency to target hGR in the nucleus. Structure/function analysis suggested a bipartite structure of NL1, analogous to that of other nuclear targeting signals (the carboxy-terminal part of DBD between amino acids 478 and 487 and the beginning of the hinge region which includes a basic amino acid stretch between 491 and 498). Upon hormone binding, NL2, located in the LBD, was activated, but was unable by itself to sustain full nuclear localization, which required the derepressed NL1 activity. Only two sequences in the LBD, localized between amino acids 600 and 626 and from amino acid 696 up to the carboxyl-terminal amino acid 777, respectively, were found to inhibit NL1 activity. As previously reported, efficient nuclear retention, mandatory for gene expression, did not required DNA-binding activity. The controversial intracellular localization of the unliganded form of hGR and the role of hsp90 in cytoplasmic localization are further discussed.  相似文献   

18.
Cellular binding proteins of thyroid hormones   总被引:1,自引:0,他引:1  
K Ichikawa  K Hashizume 《Life sciences》1991,49(21):1513-1522
  相似文献   

19.
Long-chain fatty acids and their acyl-CoA esters are potent inhibitors of nuclear thyroid hormone (T3) receptor in vitro. In the present study, we obtained evidence for acyl-CoA binding activity in the nuclear extract from rat liver. The activity sedimented at a position (3.5 S) identical with that of the T3 receptor, and the two activities sedimented together. Similarly, they coeluted on DEAE-Sephadex. After partial purification of the receptor, it was again inhibited strongly by acyl-CoAs. Heat stability and a partial trypsin digestion of the receptor both suggested that the action site of oleoyl-CoA overlapped the T3-binding domain of the receptor. In addition, thyroid hormone receptor β1, synthesized in vitro, bound oleoyl-CoA specifically and its T3-binding activity was inhibited. The dissociation constant for oleoyl-CoA binding to the partially purified receptor was 1.2 × 10?7 M. This value as well as its molecular size distinguished the nuclear binding sites from the cytoplasmic fatty acid/acyl-CoA binding proteins. Oleoyl-CoA had no effect on the glucocorticoid receptor, another member of the nuclear hormone-receptor superfamily. From these results, we propose that thyroid hormone receptor is a specific acyl-CoA binding protein of the cell nucleus.  相似文献   

20.
We have previously characterized a specific corticosterone binding protein in chromosomal non histone proteins (NHP) from rat liver. In this paper, we present evidence that a relationship exists between this protein and the cytoplasmic glucocorticoid receptor. The binding capacity of NHP is reduced by 40 p. cent when this fraction is isolated from adrenalectomized animals. Incubation of isolated nuclei with the glucocorticoid hormone receptor complex results in a decrease in the specific radioactivity of the cytoplasmic proteins and simultaneously in a rapid uptake of the isotope by the nucleus; radioactive hormone was extracted along with the NHP. Evidence is presented that the NHP component binding the hormone is closely related or identical to the cytoplasmic receptor-proteins. Progesterone and corticosterone compete similarly for the binding of dexamethasone to nuclear and cytoplasmic forms of the receptor. However the nuclear form of the receptor has a higher affinity for corticosterone (Ka : 6 × 109 M−1) than for dexamethasone (KA : 108 M−1) in vitro.A mixture of rat liver NHP and cytosol was shown to bind specifically more corticosterone than when the two proteins were incubated separately with the hormone. The Scatchard analysis shows that the enhancement of binding is due to an interaction of nuclear and cytoplasmic proteins leading to the appearance of a stable protein-protein complex which has a high affinity for the hormone (Ka : 2 × 108 M−1). KCl prevented this interaction. Complex formation does not require the presence of the hormone. The experiments presented here favor the hypothesis of the existence of a regulatory protein in the nucleus. This protein associated with the binding protein to reveal or enhance the active form of the receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号