首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Magellan region is a unique peri-Antarctic ecosystem due to its geographical position. However, the knowledge about the distribution and feeding ecology of fish larvae is scarce. Since this area is characterized by low phytoplankton biomass, we hypothesize that marine fish larvae display different foraging tactics in order to reduce diet overlap. During austral spring 2009–2010, two oceanographic cruises were carried out along southern Patagonia (50–56°S). Larval fish distribution and feeding of the two most widely distributed species were studied, the smelt Bathylagichthys parini (Bathylagidae) and black southern cod Patagonotothen tessellata (Nototheniidae). Larvae of B. parini showed a lower increase in the mouth gape at size, primarily feeding during daytime (higher feeding incidence during the day) mostly on nonmotile prey (invertebrate and copepod eggs, appendicularian fecal pellets, diatoms). They showed no increase in feeding success (number, total volume of prey per gut and prey width) with increasing larval size, and the niche breadth was independent of larval size. Larvae of P. tessellata showed a large mouth gape at size, which may partially explain the predation on motile prey like large calanoid copepods (C. simillimus) and copepodites. They are nocturnal feeders (higher feeding incidence during night) and are exclusively carnivorous, feeding on larger prey as the larvae grow. Nonetheless, niche breadth was independent of larval size. Diet overlap was important only in individuals with smaller mouth gape (<890 μm) and diminished as larvae (and correspondingly their jaw) grow. In conclusion, in the peri-Antarctic Magellan region, fish larvae of two species display different foraging tactics, reducing their trophic overlap throughout their development.  相似文献   

2.
The intestinal absorption of di- and tri-peptides generally occurs via the oligopeptide transporter, PepT1. This study evaluates the expression of PepT1 in larval Atlantic cod (Gadus morhua) during the three weeks following the onset of exogenous feeding. Larval Atlantic cod were fed either wild captured zooplankton or enriched rotifers. cDNA was prepared from whole cod larvae preceding first feeding and at 1000 each Tuesday and Thursday for the following three weeks. Spatial and temporal expression patterns of PepT1 mRNA were compared between fish consuming the two prey types using in situ hybridization and quantitative real-time PCR. Results indicated that PepT1 mRNA was expressed prior to the onset of exogenous feeding. In addition, PepT1 was expressed throughout the digestive system except the esophagus and sphincter regions. Expression slightly increased following first-feeding and continued to increase throughout the study for larvae feeding on both prey types. When comparing PepT1 expression in larvae larger than 0.15-mg dry mass with expression levels in larvae prior to feeding, no differences were detected for larvae fed rotifers, but the larvae fed zooplankton had significantly greater PepT1 expression at the larger size. In addition, PepT1 expression in the zooplankton fed larvae larger than 0.15-mg dry mass had significantly greater expression than rotifer fed larvae of a similar weight. Switching prey types did not affect PepT1 expression. These results indicate that Atlantic cod PepT1 expression was slightly different relative to dietary treatment during the three weeks following first-feeding. In addition, PepT1 may play an important role in the larval nutrition since it is widely expressed in the digestive tract.  相似文献   

3.
Diet breadth (measured as the S.D. of the log of prey size per larvae; SLH) of blue whiting micromesistius poutassou larvae followed a quadratic equation with larval size. In small larvae, diet breadth in terms of size (SLH), the mean and the maximum of the log of prey size per larvae (MLH and XLH, respectively) increased with larval size as prey size selection shifted to larger prey. In contrast, large larvae tended to reduce diet breadth of prey sizes ingested, focusing on the larger prey that were abundant, instead of raising the upper limit of prey sizes because of the low abundance of larger prey. Except for larvae at the onset of first feeding, number of prey stayed constant or decreased in relation to larval size. Both patterns (in small and large larvae) maintained a constant rate of increase of gut carbon content with increase in larval size. Large larvae appear to maintain the increase in gut carbon content during ontogenetic development by reducing diet breadth (SLH) and increasing selection towards the larger prey that are abundant.  相似文献   

4.
Feeding intensity, diet composition, selectivity, energy ingestion and dietary niche breadth of larval Atlantic bluefin tuna Thunnus thynnus were studied on the eastern (Mediterranean) spawning grounds of the species. Larval T. thynnus were collected in the Balearic Archipelago (north-west Mediterranean Sea) during 2004 and 2005 using surveys specific for larval scombrids. Larvae between 2·6 and 8·7 mm standard length (L(S) ) are diurnal feeders, and 94% of the guts collected during daylight hours were full. The mean ±s.d. number of prey per gut was 7·1 ± 5·7, with mean ±s.d. ranging from 3·0 ± 1·6 in the smallest T. thynnus larvae to 11·1 ± 5·8 in 5·0-6·0 mm L(S) larvae. Up to 21 prey were found in a single larval gut (5·0-6·0 mm L(S) ) at the end of the day. Larvae progressively selected larger prey and exhibited increased carbon content concurrent with preflexion development of feeding and locomotory structures. Larvae of 5·0-6·0 mm L(S) exhibited positive selection of cladocerans over other prey (Chesson's index), whereas copepod nauplii dominated the diets of earlier stages. The dietary niche breadth measured increased initially but decreased at c. 5·5 mm L(S) . Appendicularians were found in the diet of larger larval sizes, but no piscivory was observed. Results are discussed in light of the sparse existing data for larval T. thynnus and other larval tuna species.  相似文献   

5.
1. Size relationships are central in structuring trophic linkages within food webs, leading to suggestions that the dietary niche of smaller carnivores is nested within that of larger species. However, past analyses have not taken into account the differing selection shown by carnivores for specific size ranges of prey, nor the extent to which the greater carcass mass of larger prey outweighs the greater numerical representation of smaller prey species in the predator diet. Furthermore, the top-down impact that predation has on prey abundance cannot be assessed simply in terms of the number of predator species involved. 2. Records of found carcasses and cause of death assembled over 46 years in the Kruger National Park, South Africa, corrected for under-recording of smaller species, enabled a definitive assessment of size relationships between large mammalian carnivores and their ungulate prey. Five carnivore species were considered, including lion (Panthera leo), leopard (Panthera pardus), cheetah (Acinonyx jubatus), African wild dog (Lycaon pictus) and spotted hyena (Crocuta crocuta), and 22 herbivore prey species larger than 10 kg in adult body mass. 3. These carnivores selectively favoured prey species approximately half to twice their mass, within a total prey size range from an order of magnitude below to an order of magnitude above the body mass of the predator. The three smallest carnivores, i.e. leopard, cheetah and wild dog, showed high similarity in prey species favoured. Despite overlap in prey size range, each carnivore showed a distinct dietary preference. 4. Almost all mortality was through the agency of a predator for ungulate species up to the size of a giraffe (800-1200 kg). Ungulates larger than twice the mass of the predator contributed substantially to the dietary intake of lions, despite the low proportional mortality inflicted by predation on these species. Only for megaherbivores substantially exceeding 1000 kg in adult body mass did predation become a negligible cause of mortality. 5. Hence, the relative size of predators and prey had a pervasive structuring influence on biomass fluxes within this large-mammal food web. Nevertheless, the large carnivore assemblage was dominated overwhelmingly by the largest predator, which contributed the major share of animals killed across a wide size range.  相似文献   

6.
1. Predator-mediated coexistence occurs when predation allows competitors to coexist, due to preferential consumption of a superior competitor relative to an inferior competitor. Differences between the native treehole mosquito ( Aedes triseriatus ) and the co-occurring Asian tiger mosquito ( Aedes albopictus ) in anti-predatory larval behaviours account, in part, for the greater vulnerability of this invasive species to native predatory midge ( Corethrella appendiculata ). We test the hypothesis that stage-dependent differences in the sizes of A. albopictus and A. triseriatus larvae, relative to the size-limited C. appendiculata , contribute to differential consumption and the likelihood of predator-mediated coexistence of these competitors.
2. In all instars, larvae of A. triseriatus were larger than A. albopictus of the same stage. Third and fourth instar C. appendiculata selectively consumed late-stage A. albopictus in preference to same-stage A. triseriatus . Small, early-stage prey larvae did not differ in vulnerability to predation, but large, late-stage larvae differed significantly in vulnerability to predation, probably owing to size-limited predation by fourth instar C. appendiculata. This effect was less pronounced for third instar C. appendiculata .
3. Prey size, in conjunction with anti-predatory behavioural responses, alters the probability of predator-mediated coexistence. A stage-structured predation model showed that equally vulnerable early stages reduce the range of environmental conditions (productivities) in which predator-mediated coexistence is possible, increasing the likelihood of both competitive exclusion of the resident species or failure of the invasive to establish. These results underscore the importance of stage-dependent interspecific differences in predator–prey interactions for determining how predators may affect community composition.  相似文献   

7.
In many seabird studies, single annual proxies of prey abundance have been used to explain variability in breeding performance, but much more important is probably the timing of prey availability relative to the breeding season when energy demand is at a maximum. Until now, intraseasonal variation in prey availability has been difficult to quantify in seabirds. Using a state‐of‐the‐art ocean drift model of larval cod Gadus morhua, an important constituent of the diet of common guillemots Uria aalge in the southwestern Barents Sea, we were able to show clear, short‐term correlations between food availability and measurements of the stress hormone corticosterone (CORT) in parental guillemots over a 3‐year period (2009–2011). The model allowed the extraction of abundance and size of cod larvae with very high spatial (4 km) and temporal resolutions (1 day) and showed that cod larvae from adjacent northern spawning grounds in Norway were always available near the guillemot breeding colony while those from more distant southerly spawning grounds were less frequent, but larger. The latter arrived in waves whose magnitude and timing, and thus overlap with the guillemot breeding season, varied between years. CORT levels in adult guillemots were lower in birds caught after a week with high frequencies of southern cod larvae. This pattern was restricted to the two years (2009 and 2010) in which southern larvae arrived before the end of the guillemot breeding season. Any such pattern was masked in 2011 by already exceptionally high numbers of cod larvae in the region throughout chick‐rearing period. The findings suggest that CORT levels in breeding birds increase when the arrival of southern sizable larvae does not match the period of peak energy requirements during breeding.  相似文献   

8.
The conversion of natural ecosystems due to anthropogenic activities has led to the destruction of natural habitats and to the deterioration of habitat quality. Top predators particularly respond sensitively to changes in habitat structures, including the availability of prey. The cheetah Acinonyx jubatus prefers small‐medium‐sized, wild ungulate prey due to the cheetah''s morphological adaptations. However, the majority of the species’ population is found beyond protected areas, where habitat structures, species abundances, and community composition are highly influenced by human activities. Only few studies have analyzed the diet preference of cheetahs in relation to prey availability and abundance for rangelands beyond protected areas in Eastern Africa. The study aimed to determine cheetah prey preference in the rangelands of south‐eastern Kenya based on scat analyses. We compared dietary preference of cheetah with prey availability. For this purpose, we conducted standardized game counts. We analyzed 27 cheetah scat samples collected across the same study area where we also conducted game counts. We found that Grant''s gazelle Gazella granti contributed the highest portion of cheetah''s diet, although Thomson''s gazelle Gazella thomsonii was the most abundant medium‐sized ungulate prey in the study areas. We also recorded two primate species, yellow baboon Papio cynocephalus and vervet monkey Chlorocebus pygerythrus, as well as the rock hyrax Procavia capensis in the cheetah diet. These species have never been documented as cheetah prey before. Furthermore, our results document livestock as potential prey for cheetahs. These observations underline that cheetah use diverse prey in rangelands outside protected areas, and that the abundance of specific prey does not influence cheetah prey preference.  相似文献   

9.
Chrysomya albiceps is a facultative predator and cannibal species during the larval stage. Very little is known about cannibalism and prey size preference, especially in blowflies. The purpose of this investigation was to determine the influence of prey size and larval density on cannibalism by third-instar larvae of C. albiceps under laboratory conditions. Our results indicate that no cannibalism occurs by third-instar larvae on first- and second-instar larvae, but third-instar larvae do eat second-instar larvae. The functional response on second-instar larvae is consistent with Holling type II. The consequences of consuming second-, compared to first- or third-, instar larvae as well as the implications of cannibalism for the population dynamics of C. albiceps are discussed.  相似文献   

10.
Juvenile walleye pollock, Theragra chalcogramma, is the dominant forage fish on the continental shelf of the Gulf of Alaska, yet little is known about the feeding habits of this important interval of pollock life history. The taxonomic composition and size of prey found in the stomachs of age-0 juveniles collected at three nearshore locations in the Gulf of Alaska in September 1990 were compared to the composition and size of zooplankton collected in concurrent plankton tows. The maximum length of prey consumed increased dramatically over the length range of pollock examined (58–110 mm) from approximately 7 mm to 30 mm, due mainly to the consumption of large euphausiids and chaetognaths by the bigger individuals. The maximum width of prey changed little over this size range although there was a general increase in prey width with increasing predator size. The minimum prey length and width did not change with increasing fish size. Juvenile pollock generally selected the larger prey sizes relative to what was available. Juvenile pollock showed a marked preference for adult euphausiids and decapod larvae and an avoidance of copepods and chaetognaths relative to the numbers collected in net tows. These results are discussed relative to the feeding ecology of these juvenile fishes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
When offered a mixed diet of different zooplanktonic items covering a body size range of 75–2200 μm, (a) rohu, Labeo rohita and (b) singhi, Heteropneustes fossilis larvae ingested progressively larger prey as they grew, due to age-related increase in gape. However, a nearly constant prey size/mouth size ratio was maintained for a period of 4wk after hatching. The dominance of rotifers in the diet during the first 2-wk was followed by cladocerans, particularly Moina macrocopa. Significant differences observed in the growth rates of the larvae reared on different diet regimes were related to ontogenetic changes in prey selection. An exclusive copepod diet throughout resulted in the lowest weight gain in the larvae of both species. However, copepods had no apparent adverse effects when present with the preferred rotifers and cladocerans. Although constituting a suboptimal prey size for the older larvae, rotifers alone, when present in sufficient densities, produced growth rates comparable to those obtained on a cladoceran diet. However, a mixed diet regime contributed to the maximum growth. The implications of these findings to rearing larvae of the economically important rohu and singhi are discussed.  相似文献   

12.
Predator–prey relationships are important ecological interactions, affecting biotic community composition and energy flow through a system, and are of interest to ecologists and managers. Morphological diet analysis has been the primary method used to quantify the diets of predators, but emerging molecular techniques using genetic data can provide more accurate estimates of relative diet composition. This study used sequences from the 18S V9 rRNA barcoding region to identify prey items in the gastrointestinal (GI) tracts of predatory fishes. Predator GI samples were taken from the Black River, Cheboygan Co., MI, USA (n = 367 samples, 12 predator species) during periods of high prey availability, including the larval stage of regionally threatened lake sturgeon (Acipenser fulvescens Rafinesque 1817) in late May/early June of 2015 and of relatively lower prey availability in early July of 2015. DNA was extracted and sequenced from 355 samples (96.7%), and prey DNA was identified in 286 of the 355 samples (80.6%). Prey were grouped into 33 ecologically significant taxonomic groups based on the lowest taxonomic level sequences that could be identified using sequences available on GenBank. Changes in the makeup of diet composition, dietary overlap, and predator preference were analyzed comparing the periods of high and low prey abundance. Some predator species exhibited significant seasonal changes in diet composition. Dietary overlap was slightly but significantly higher during the period of high prey abundance; however, there was little change in predator preference. This suggests that change in prey availability was the driving factor in changing predator diet composition and dietary overlap. This study demonstrates the utility of molecular diet analysis and how temporal variability in community composition adds complexity to predator–prey interactions.  相似文献   

13.
Black seabream, Acanthopagrus schlegeli, and Japanese seaperch, Lateolabrax japonicus, are important commercial species in the coastal waters of western Pacific Ocean, including Japan, Korea and China. In Hong Kong, larvae and juveniles of these two species occur in bays and estuaries during late winter and spring. This study reports on the ontogenetic changes in food habits in larvae and juveniles of these species in an artificial rocky shore area. Copepods and cladocerans were the most numerous food items for black seabream. There was a shift to larger and benthic prey as the fishes grew. Japanese seaperch <2.1cm fed predominantly on copepods and cladocerans, while larger prey were added as fish size increased. Japanese seaperch >6.0cm were piscivorous. Maximum prey width increased with fish standard length and mouth gape width in both species. Overall, black seabream showed greater diet breadth than did Japanese seaperch. In black seabream, diet breadth increased with fish size. In Japanese seaperch, diet breadth increased with size for fishes <4.0cm, then decreased as the fishes became piscivorous. Prey selectivity in black seabream was determined using information on prey availability in plankton samples. In general, preference was stronger for cypris larvae, Penilia avirostris and decapod larvae than for copepods and podonids. In recent years, overfishing and environmental degradation have led to the decline of fish populations in Tolo Harbour. Absence of fishes with empty gut indicates that inner Tolo Harbour is still an important nursery area for these two commercial species.  相似文献   

14.
The predatory behavior of a carnivorous marine copepod, Euchaeta norvegica Boeck, feeding on eggs and larvae of the North Atlantic cod Gadus morhua L. was examined. In the laboratory, adult females of Euchaeta norvegica did not feed on eggs. Predation rates on yolk-sac larvae and starved post-yolk-sac larvae did not vary significantly with age up to 14 days old because of little change in size or activity of the larvae. This differs from E. elongata Esterly, a temperate congener, which selectively feeds on middle yolk-sac-stage larvae of the Pacific hake Merluccius productus Ayres. The subarctic congener Euchaeta norvegica appeared to detect tailbeats of the cod larvae. The functional response was measured for E. norvegica feeding on 2–4-day-old yolk-sac larvae. Maximum ingestion was achieved at 5 larvae · 1−1 with a rate of 6.3 ± 1.2 larvae·copepod−1·day−1 or 10.5% of its body weight. Estimates of short-term feeding rates, determined from gut-evacuation curves, indicate that E. norvegica, when preying on cod larvae only, must feed for at least 4 h to achieve this maximum ingestion rate. Presence of copepods as alternative prey for E. norvegica depresses its predation rate on cod, although the ingestion of cod greatly supplements the ration consumed. Copepods fed cod larvae form black melanin-pigmented fecal pellets in which larval cod otoliths have been found. Approximately 0.5 larva was required to form one fecal pellet. The last three developmental stages of the predatory copepod were able to ingest larvae and form dark-pigmented fecal pellets. The feeding of this carnivorous marine copepod may contribute to the mortality noted in the larval stages of cod because E. norvegica is numerous in the center of the cod-spawning area of Skrova in the Lofoten Islands, northern Norway.  相似文献   

15.
The trophodynamics of a coastal plankton community were studied,focusing on fish larvae and their copepod prey. The major objectiveswere to describe distributional overlap and evaluate the predatoryimpact by larval fish. The study was carried out across DoggerBank in the North Sea, August-September 1991. Sampling transectscrossed tidal fronts off the Bank and plankton at all trophiclevels showed peak abundance within frontal zones. Also Verticallythere was a significant overlap in distributional patterns ofthe plankton. Seven species of fish larvae were abundant, ofthese sprat (Sprattus sprattus) dominated. The abundance ofone group of fish larvae peaked in the shallow water close tothe Bank, whereas other species, including sprat, were foundin deeper water. Prey preference and predation pressure of fishlarvae were assessed using information on prey sizes and growthrates of larvae and the copepod prey. We estimated larval removalof preferred prey sizes to 3–4% day–1, counterbalancedby a 3–7% day–1' replenishment from copepod productionand growth. Additional predation pressure on copepods by aninvertebrate predator was estimated to 1–3%day–1.In conclusion, the dynamics of fish larvae and other zooplankterswere closely linked. At peak abundances of fish larvae (>35mg dry weight m–2), the accumulated predation on specificsize ranges of copepods, exerted by larvae and other predators,could exceed the ability of copepod replenishment and intra-/interspecificcompetition among predators might take place.  相似文献   

16.
This study investigated diel variations in zooplankton composition and abundance, and the species composition, density, size structure, feeding activity, diet composition and prey selection of larval and 0+ year juvenile fishes in the littoral of a man‐made floodplain waterbody over five 24 h periods within a 57 day period. There was a significant difference in the species composition of diurnal and nocturnal catches, with most species consistently peaking in abundance either during daylight or at night, reflecting their main activity period. There were no consistent diel patterns in assemblage structure or the abundance of some species, however, most likely, respectively, due to the phenology of fish hatching and ontogenetic shifts in diel behaviour or habitat use. There were few clear diel patterns in the diet composition or prey selection of larval and 0+ year juvenile roach Rutilus rutilus and perch Perca fluviatilis, with most taxa consistently selected or avoided irrespective of the time of day or night, and no obvious shift between planktonic and benthic food sources, but dietary overlap suggested that interspecific interactions were probably strongest at night. It is essential that sampling programmes account for the diel ecology of the target species, as diurnal surveys alone could produce inaccurate assessments of resource use. The relative lack of consistent diel patterns in this study suggests that multiple 24 h surveys are required in late spring and early summer to provide accurate assessments of 0+ year fish assemblage structure and foraging ecology.  相似文献   

17.
In April 1995 a patch of blue whiting larvae Micromesistius poutassou was found at low illumination levels below 20 m depth near Porcupine Bank, west of Ireland, together with high densities of copepod nauplii and reduced turbulence rates, suggesting that larval blue whiting vertical distribution was determined by prey concentration, illumination and turbulence. Most (83·8%) larvae (2·0–7·5 mm L s) had food in their guts. Feeding incidence and feeding intensities increased with increasing larval length. Only larvae >5·5 mm reduced numerical in favour of weight-based feeding intensity, indicating a shift in dietary composition. Maxima of the diel rhythms of feeding incidence and intensities occurred at 1800 and 2100 hours and minima at dawn (0600 hours). Proportionately, more nauplii were eaten by day but more copepod eggs and tintinnids at night. The distinct diel pattern in larval blue whiting feeding suggests that any analysis of factors mediating feeding must take into account diel feeding cycles. Larval feeding was significantly affected by wind speed. The larvae ate more and larger items at low than at higher turbulence levels. The data suggest that the maximum level of turbulence was not beneficial for larval blue whiting, but more moderate wind speeds could have had an enhancing effect on larval feeding success.  相似文献   

18.
Variation in the diet of the Pacific sand lance Ammodytes hexapterus was examined in three years (2009–2011) at four sites in British Columbia, Canada. There were 12 major taxa of prey in diets, eight of which were Crustacea, with copepods being by far the dominant taxon in all 12 site‐years. Of the 22 copepod taxa recorded, only Calanus marshallae and Pseudocalanus spp. occurred in all collections, and these two calanoid species dominated diets in terms of frequency of occurrence and total numbers of prey (Pseudocalanus spp. in most collections), and total prey biomass (C. marshallae in all collections). Based on an index of relative importance, C. marshallae was the primary prey at the two southerly sampling sites (Pine and Triangle Islands) and Pseudocalanus spp. at the two northerly sites (Lucy Island and S'G ang Gwaay). Based on an index of dietary overlap, the species composition of the copepod component of A. hexapterus diets overlapped very strongly at the northerly and the southerly pairs of sites in both a cold‐water La Niña year (2009) and a warm‐water El Niño year (2010), but overall there was more homogeneity amongst all four sites in the La Niña year.  相似文献   

19.
Capsule Variation in prey availability appears to influence Chough fledging success and juvenile survival.

Aims To determine seasonal and annual variations in Chough prey and how these influence fledging success and juvenile survival.

Methods Chough faeces (n = 437, 3905 invertebrates) were collected year-round and analysed to determine diet composition. Seasonal and annual variation in prey abundance in Chough foraging habitat was assessed using pitfall trapping (n = 747, 27 124 invertebrates) between 1996 and 2003. Fledging success was estimated for a population of 12 breeding pairs; juvenile survival was estimated by year-round resighting (n < 2500) of individual birds that were colour-ringed as nestlings.

Results From April to June a high biomass of prey and a great variety of species were observed. Between July and October, both biomass and species diversity were reduced; prey consisted mainly of ants and a few beetle species. From November to March, biomass availability was intermediate, with the diet consisting mostly of Tipulidae larvae, plants and dung beetles. Chough juvenile monthly survival was low in August, November and December. Annual variation in fledging success was correlated with prey biomass availability in May.

Conclusion Seasonal variation in the availability of prey species and their biomass influences Chough demography.  相似文献   

20.
Food availability can strongly affect predator-prey dynamics. When change in habitat condition reduces the availability of one prey type, predators often search for other prey, perhaps in a different habitat. Interactions between behavioural and morphological traits of different prey may influence foraging success of visual predators through trait-mediated indirect interactions (TMIIs), such as prey activity and body coloration. We tested the hypothesis that foraging success of stream-dwelling cutthroat trout (Onchorhyncus clarki) on cryptically coloured, less-active benthic prey (larval mayfly; Paraleptophebia sp.) can be enhanced by the presence of distinctly coloured, active prey (larval stonefly shredder; Despaxia augusta). Cutthroat trout preyed on benthic insects when drifting invertebrates were unavailable. When stonefly larvae were present, the trout ate most of the stoneflies and also consumed a higher proportion of mayflies than under mayfly only treatment. The putative mechanism is that active stonefly larvae supplied visual cues to the predator that alerted trout to the mayfly larvae. Foraging success of visual predators on cryptic prey can be enhanced by distinctly coloured, active benthic taxa through unidirectional facilitation to the predators, which is a functional change of interspecific interaction caused by a third species. This study suggests that prey-predator facilitation through TMIIs can modify species interactions, affecting community dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号