首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The purification and properties of an ultraviolet (UV) repair endonuclease are described. The enzyme is induced by infection of cells of Escherichia coli with phage T4 and is missing from extracts of cells infected with the UV-sensitive and excision-defective mutant T4V(1). The enzyme attacks UV-irradiated deoxyribonucleic acid (DNA) containing either hydroxymethylcytosine or cytosine, but does not affect native DNA. The specific substrate in UV-irradiated DNA appears to be pyrimidine dimer sites. The purified enzyme alone does not excise pyrimidine dimers from UV-irradiated DNA. However, dimer excision does occur in the presence of the purified endonuclease plus crude extract of cells infected with the mutant T4V(1).  相似文献   

2.
Deinococcus radiodurans has 2 endonucleases that incise UV-irradiated DNA. UV endonuclease-alpha and UV endonuclease-beta, that are believed to functionally overlap. Both endonucleases must be mutationally inactivated to yield an incisionless, markedly UV-sensitive phenotype. denV, the bacteriophage T4 gene encoding pyrimidine dimer-DNA glycosylase (PD-glycosylase), was introduced and expressed via duplication insertion in D. radiodurans wild-type, and single and double UV endonuclease mutants. The strain deficient in UV endonuclease-alpha has wild-type UV resistance, and the expression of PD-glycosylase exerted no survival effect on this strain or wild-type. Expression of denV increased survival of both the markedly UV-sensitive double mutant and the moderately UV-sensitive strain deficient only in UV endonuclease-beta. In endonuclease-beta-deficient cells phenotypic complementation by denV was almost complete in restoring UV resistance to wild-type levels. These results suggest that UV endonuclease-alpha (which is present in the endonuclease-beta-deficient cells) does not recognize one or more types of cyclobutane dimer incised by the PD-glycosylase or UV endonuclease-beta.  相似文献   

3.
We have employed conjugal transfer of an F' lac episome to examine targeted and untargeted mutagenesis in the lacI gene of Escherichia coli and to determine the relative importance of pyrimidine dimers as premutational UV lesions compared to (6-4) photoproducts that also may have a mutational role. This conjugal system allowed us to assess the premutagenic role of UV lesions independently from any role as inducers of SOS functions. F' DNA was transferred to an SOS-induced recipient strain from: unirradiated donor cells, UV-treated donor cells or donor cells that were irradiated and then exposed to photoreactivating light. The results indicate that SOS-related, untargeted events may account for as much as one-third of the nonsense mutations (i.e., base substitutions) recovered after undamaged F' DNA is transferred to UV-irradiated recipients. When the donor strain also is irradiated, in excess of 90% of the mutations detected following conjugation appear to be targeted. Photoreactivation of the UV-treated donors cells, prior to F' transfer to the SOS-induced recipient strain, demonstrated that in this experimental system virtually all recovered UV-induced mutations are targeted by photoreactivable lesions. We presume that these lesions are pyrimidine dimers because (6-4) photoproducts are not photoreactivable.  相似文献   

4.
L S Barenfel'd 《Tsitologiia》1984,26(3):343-348
By means of ultracentrifugation in alkaline sucrose gradients it has been shown that the size of DNA fragments synthesized in Chinese hamster cells of UV-sensitive clone (CHS-1) after exposure to UV light was equal to the distance between pyrimidine dimers in the parental DNA determined using endonuclease of Micrococcus luteus. With the UV-resistant clone (V-79), the length of fragments of the newly synthesized DNA was much longer than that between pyrimidine dimers in the parental DNA. The data obtained support the model according which DNA synthesis on the UV-irradiated template gives rise to gaps opposite to pyrimidine dimers.  相似文献   

5.
Two new UV-sensitive mutants of Chlamydomonas, UVS10 and UVS11, were isolated. Both behave as single nuclear mutations. UVS10 was mapped to linkage group I. UVS11 is a separate, unlinked mutation but has not yet been located to a specific linkage group. Both mutants are proficient in the excision of pyrimidine dimers from nuclear DNA. The survival of UV-irradiated UVS11 is increased when plated in the presence of 1.5 mM caffeine, similar to wild-type. Caffeine has no effect on the survival of UV-irradiated UVS10. UV-irradiated UVS11 frequently divides at least once before dying, in contrast to UVS10 or wild-type. UVS11 also exhibits a much increased frequency of mutation to streptomycin resistance after UV irradiation.  相似文献   

6.
Alkaline sucrose gradient sedimentation was used to establish whether strand breakage and repair take place in the DNA of UV-irradiated Bacteroides fragilis during the removal of pyrimidine dimers. A B. fragilis wild-type strain and two of its repair mutants, a mitomycin C sensitive mutant (MTC25) having wild-type levels of UV survival, and a UV-sensitive, mitomycin C sensitive mutant (UVS9), were investigated. Under anaerobic conditions, far-UV irradiation induced metabolically regulated strand breakage and resynthesis in the wild-type strain, but this was markedly reduced in both the MTC25 and UVS9 mutants. Approximately half of the strand breaks generated by the various strains were rejoined during further holding in buffer. Under replicating conditions, complete repair of strand breaks in the wild type was observed. Caffeine treatment under anaerobic conditions caused direct DNA strand breakage in B. fragilis cells but did not inhibit UV-induced breakage or repair.  相似文献   

7.
The wild-type strain and mutants of Haemophilus influenzae, sensitive or resistant to ultraviolet light (UV) as defined by colony-forming ability, were examined for their ability to perform the incision and rejoining steps of the deoxyribonucleic acid (DNA) dark repair process. Although UV-induced pyrimidine dimers are excised by the wild-type Rd and a resistant mutant BC200, the expected single-strand DNA breaks could not be detected on alkaline sucrose gradients. Repair of the gap resulting from excision must be rapid when experimental conditions described by us are employed. Single-strand DNA breaks were not detected in a UV-irradiated sensitive mutant (BC100) incapable of excising pyrimidine dimers, indicating that this mutant may be defective in a dimer-recognizing endonuclease. No single-strand DNA breaks were detected in a lysogen BC100(HP1c1) irradiated with a UV dose large enough to induce phage development in 80% of the cells.  相似文献   

8.
Suspensions of Neurospora crassa conidia were inactivated by blacklight (BL) radiation (300 to 425 nm) in the absence of exogenous photosensitizing compounds. Carotenoid-containing wild-type conidia were less sensitive to BL radiation than albino conidia, showing a dose enhancement factor (DEF) of 1.2 for dose levels resulting in less than 10% survival. The same strains were about equally sensitive to shortwave ultraviolet (UV) inactivation. The kinetics of BL inactivation are similar to those of photodynamic inactivation by visible light in the presence of a photosensitizing dye (methylene blue). Only limited inactivation by visible light in the absence of exogenous photosensitizers was observed. BL and UV inactivations are probably caused by different mechanisms since wild-type conidia are only slightly more resistant to BL radiation (DEF = 1.2 at 1.0% survival) than are conidia from a UV-sensitive strain (upr-1, uvs-3). The BL-induced lethal lesions are probably no cyclobutyl pyrimidine dimers since BL-inactivated Haemophilus influenzae transforming deoxyribonucleic acid is not photoreactivated by N. crassa wild-type enzyme extracts, whereas UV-inactivated transforming deoxyribonucleic acid is photoreactivable with this treatment.  相似文献   

9.
An alternative eukaryotic DNA excision repair pathway.   总被引:7,自引:2,他引:5       下载免费PDF全文
DNA lesions induced by UV light, cyclobutane pyrimidine dimers, and (6-4)pyrimidine pyrimidones are known to be repaired by the process of nucleotide excision repair (NER). However, in the fission yeast Schizosaccharomyces pombe, studies have demonstrated that at least two mechanisms for excising UV photo-products exist; NER and a second, previously unidentified process. Recently we reported that S. pombe contains a DNA endonuclease, SPDE, which recognizes and cleaves at a position immediately adjacent to cyclobutane pyrimidine dimers and (6-4)pyrimidine pyrimidones. Here we report that the UV-sensitive S. pombe rad12-502 mutant lacks SPDE activity. In addition, extracts prepared from the rad12-502 mutant are deficient in DNA excision repair, as demonstrated in an in vitro excision repair assay. DNA repair activity was restored to wild-type levels in extracts prepared from rad12-502 cells by the addition of partially purified SPDE to in vitro repair reaction mixtures. When the rad12-502 mutant was crossed with the NER rad13-A mutant, the resulting double mutant was much more sensitive to UV radiation than either single mutant, demonstrating that the rad12 gene product functions in a DNA repair pathway distinct from NER. These data directly link SPDE to this alternative excision repair process. We propose that the SPDE-dependent DNA repair pathway is the second DNA excision repair process present in S. pombe.  相似文献   

10.
H Yajima  M Takao  S Yasuhira  J H Zhao  C Ishii  H Inoue    A Yasui 《The EMBO journal》1995,14(10):2393-2399
Many eukaryotic organisms, including humans, remove ultraviolet (UV) damage from their genomes by the nucleotide excision repair pathway, which requires more than 10 separate protein factors. However, no nucleotide excision repair pathway has been found in the filamentous fungus Neurospora crassa. We have isolated a new eukaryotic DNA repair gene from N.crassa by its ability to complement UV-sensitive Escherichia coli cells. The gene is altered in a N.crassa mus-18 mutant and responsible for the exclusive sensitivity to UV of the mutant. Introduction of the wild-type mus-18 gene complements not only the mus-18 DNA repair defect of N.crassa, but also confers UV-resistance on various DNA repair-deficient mutants of Saccharomyces cerevisiae and a human xeroderma pigmentosum cell line. The cDNA encodes a protein of 74 kDa with no sequence similarity to other known repair enzymes. Recombinant mus-18 protein was purified from E.coli and found to be an endonuclease for UV-irradiated DNA. Both cyclobutane pyrimidine dimers and (6-4)photoproducts are cleaved at the sites immediately 5' to the damaged dipyrimidines in a magnesium-dependent, ATP-independent reaction. This mechanism, requiring a single polypeptide designated UV-induced dimer endonuclease for incision, is a substitute for the role of nucleotide excision repair of UV damage in N.crassa.  相似文献   

11.
Photoreactivation is one of the DNA repair mechanisms to remove UV lesions from cellular DNA with a function of the DNA photolyase and visible light. Two types of photolyase specific for cyclobutane pyrimidine dimers (CPD) and for pyrimidine (6-4) pyrimidones (6-4PD) are found in nature, but neither is present in cells from placental mammals. To investigate the effect of the CPD-specific photolyase on killing and mutations induced by UV, we expressed a marsupial DNA photolyase in DNA repair-deficient group A xeroderma pigmentosum (XP-A) cells. Expression of the photolyase and visible light irradiation removed CPD from cellular DNA and elevated survival of the UV-irradiated XP-A cells, and also reduced mutation frequencies of UV-irradiated shuttle vector plasmids replicating in XP-A cells. The survival of UV-irradiated cells and mutation frequencies of UV-irradiated plasmids were not completely restored to the unirradiated levels by the removal of CPD. These results suggest that both CPD and other UV damage, probably 6-4PD, can lead to cell killing and mutations.  相似文献   

12.
An approach to the detection of pyrimidine dimer-DNA glycosylase activity in living cells is presented. Mutants of Escherichia coli defective in uvr functions required for incision of UV-irradiated DNA were infected with phage T4 denV+ or denV- (defective in the T4 pyrimidine dimer-DNA glycosylase activity). In the former case the denV gene product catalyzed the incision of UV-irradiated host DNA, facilitating the subsequent excision of thymine-containing pyrimidine dimers. Isolation of these dimers from the acid-soluble fraction of infected cells was achieved by a multistep thin-layer chromatographic system. Exposure of the dimers to irradiation that monomerizes pyrimidine dimers (direct photoreversal) resulted in the stoichiometric formation of free thymine. Thus, in vivo incision of UV-irradiated DNA dependent on a pyrimidine dimer-DNA glycosylase can be demonstrated.  相似文献   

13.
Survival curves of 3 diploid (D7) yeast strains: one wild-type, one deficient in excision of pyrimidine dimers (UV-sensitive) and one blocked in DNA double-strand-break repair (X-ray-sensitive), were compared after irradiation with cyclotron-produced fast neutrons. It was observed that both the UV-sensitive (rad3/rad3) and the X-ray-sensitive (rad52/rad52) mutants were more sensitive to neutrons than the wild-type. The role of DNA double-strand-breaks in neutron-induced cell death was further studied by comparing the relative sensitivity of the rad52/rad52 mutant to gamma-rays and fast neutrons. A comparison of the dose modification factors revealed that the deficiency in DNA double-strand-break repair did not make the yeast cells more sensitive to neutrons than to photons, which suggests that lesions of a different type may also be produced by neutrons. Survival curves obtained upon immediate plating and after delayed plating of neutron-irradiated cells showed that all 3 yeast strains were efficient in liquid holding recovery. The role of different repair pathways in cellular recovery from neutron-induced lethal damage is discussed.  相似文献   

14.
The extent of association between donor transforming deoxyribonucleic acid (DNA) and recipient DNA in Haemophilus influenzae as a function of ultraviolet (UV) dose to the transforming DNA has been measured by isopycnic analysis of lysates of (3)H-labeled recipient cells exposed to DNA labeled with (32)P and heavy isotopes. Except for doses above 15,000 ergs/mm(2), the results of these measurements are in good agreement with previous estimates made by another technique. Experiments with a mutant temperature sensitive for DNA synthesis and another mutant defective in excision of pyrimidine dimers suggest that the discrepancy between the methods of high doses results from DNA synthesis, in which portions of the associated donor DNA containing pyrimidine dimers are excised and broken down, and the components are reutilized for synthesis.Repair of UV-irradiated, transforming DNA during incubation of recipient cells is observed as an increase in transforming ability when fractions from CsCl gradients of cell lysates are assayed on excision-deficient cells. When transforming DNA containing markers of different UV sensitivities is used, repair of the UV-resistant nov marker by excision proficient cells takes place exclusively in the donor DNA that is associated with recipient DNA, and this repair is observed even in the absence of DNA synthesis. However, no repair is observed in the case of the more UV-sensitive str marker, possibly because excision events may remove a large fraction of the integrated str markers in addition to repairing a small fraction of the integrated DNA containing this marker.  相似文献   

15.
Perturbations of Simian Virus 40 (SV40) DNA replication by ultraviolet (UV) light during the lytic cycle in permissive monkey CV-1 cells resemble those seen in host cell DNA replication. Formation of Form I DNA molecules (i.e. completion of SV40 DNA synthesis) was more sensitive to UV irradiation than synthesis of replicative intermediates or Form II molecules, consistent with inhibition of DNA chain elongation. The observed amounts of [3H]thymidine incorporated in UV-irradiated molecules could be predicted on the assumption that pyrimidine dimers are responsible for blocking nascent DNA strand growth. The relative proportion of labeled Form I molecules in UV-irradiated cultures rapidly increased to near-control values with incubation after 20 or 40 J/m2 of light (0.9--1.0 or 1.8--2.0 dimers per SV40 genome, respectively). This rapid increase and the failure of Form II molecules to accumulate suggest that SV40 growing forks can rapidly bypass many dimers. Form II molecules formed after UV irradiation were not converted to linear (Form III) molecules by the dimer-specific T4 endonuclease V, suggesting either that there are no gaps opposite dimers in these molecules or that T4 endonuclease V cannot use Form II molecules as substrates.  相似文献   

16.
Chinese hamster ovary cells and two UV-hypersensitive derivatives were used to determine the importance of DNA excision repair for split-dose recovery. In the wild-type cells 75% of the maximum theoretical recovery was observed when the fractions were delivered at 2-h intervals. Very little recovery was evident in the two hypersensitive cell lines. Using radioimmunoassays specific for (6-4)photoproducts and cyclobutane dimers, the ability of UV-irradiated repair-deficient cells representing 5 complementation groups to repair these 2 photoproducts was determined. Removal of antibody-binding sites specific for (6-4)photoproducts was 80% complete in 6 h and was defective in the UV-sensitive cells. In contrast, only 20-60% of antibody-binding sites specific for cyclobutane dimers were removed 18 h post-irradiation, and the extent of removal was the same in normal and defective cell lines. We conclude that repair of (6-4)photoproducts accounts for split-dose recovery. In addition, we conclude that a consequence of DNA repair in CHO cells is modification rather than removal of cyclobutane dimers.  相似文献   

17.
Mammalian rpS3, a ribosomal protein S3 with a DNA repair endonuclease activity, nicks heavily UV-irradiated DNA and DNA containing AP sites. RpS3 calls for a novel endonucleolytic activity on AP sites generated from pyrimidine dimers by T4 pyrimidine dimer glycosylase activity. This study revealed that rpS3 cleaves the lesions including AP sites, thymine glycols, and other UV damaged lesions such as pyrimidine dimers. This enzyme does not have a glycosylase activity as predicted from its amino acid sequence. However, it has an endonuclease activity on DNA containing thymine glycol, which is exactly overlapped with UV-irradiated or AP DNAs, indicating that rpS3 cleaves phosphodiester bonds of DNAs containing altered bases with broad specificity acting as a base-damage-endonuclease. RpS3 cleaves supercoiled UV damaged DNA more efficiently than the relaxed counterpart, and the endonuclease activity of rpS3 was inhibited by MgCl2 on AP DNA but not on UV-irradiated DNA.  相似文献   

18.
The effect of cyclobutyl pyrimidine dimers on cytotoxicity, induction of synthesis of the RecA and UmuC proteins, and mutagenesis was studied in Escherichia coli uvrA6 cells possessing excess amounts of photoreactivating enzyme. Exposure of 254 nm ultraviolet-irradiated (10 J/m2) cells to radiation from daylight fluorescent lamps reduced the amounts of thymine-containing dimers in a photoreactivating fluence-dependent manner, up to about 90% reduction at 5 min exposure. Of the lethal ultraviolet damage, 85% was photoreactivable (i.e. cyclobutyl pyrimidine dimers) and 15% was non-photoreactivable. An incident fluence of 1 J/m2 resulted in approximately a 5-fold increase in the synthesis of the RecA and UmuC proteins, as compared to the spontaneous level. If the UV-irradiated cell suspensions were illuminated with a fluorescent lamp at a dose which resulted in the full photoreactivation of viability, the yields of both proteins were reduced to 60% of the non-photoreactivated control cells. Furthermore, photoreactivation was shown to be more effective in the repair of lethal damage than in the repair of premutational damage. These experiments suggest that, among lethal damages, non-photoreactivable damage plays a more important role in both induction of the SOS functions and mutagenesis in uvrA6 cells than do cyclobutyl pyrimidine dimers.  相似文献   

19.
20.
Seven mutants of Haemophilus influenzae were isolated by the criterion of sensitivity to ultraviolet (UV) inactivation of colony formation. These mutants and the wild type were characterized with regard to X-ray inactivation of colony formation, UV induction of division inhibition, the ability of the eight strains to act as recipients to UV-irradiated H. influenzae phage and transforming deoxyribonucleic acid (DNA), and the influence of acriflavine on the survival of UV-irradiated transforming DNA with these strains as recipients. The photoreactivable sector of transforming DNA with yeast photoreactivating enzyme was measured for the most UV-sensitive mutant and was found to be greater than that of wild type. Judged by the above criteria, the order of the strains' sensitivities shows some, but by no means complete, correlation from one type of sensitivity characterization to another, indicating that a minimum of two variables is needed to explain the differences in the strains. Acriflavine increases the UV sensitivity of transforming DNA except in the most sensitive mutant. This effect is usually, but not always, more pronounced in the case of the more UV-resistant marker. The acriflavine effect is postulated to be the result of at least two factors: (i) interference with repair of transforming DNA in the host cell, and (ii) interference with the probability of recombination between transforming DNA and host DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号