首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The Escherichia coli dnaW mutation is an allele of the adk gene   总被引:3,自引:0,他引:3  
Summary A dnaW mutant, isolated on the basis of inability to effect conjugal DNA transfer at high temperature, has been shown by complementation and enzyme assay to be defective in the adk (adenylate kinase; EC 2.7.4.3) locus. The adk mutant, known to have reduced ATP concentration at the nonpermissive temperature (Cousin and Belaich 1966), was used to demonstrate a donor energy requirement for stable aggregate formation and for chromosome transfer in conjugation.  相似文献   

3.
Allelic variants of CHEK2 contribute to an elevated risk for human breast cancer and possibly other cancer types. In particular, the CHEK2*1100delC polymorphic variant has been identified as a low-penetrance breast cancer susceptibility allele in breast cancer families with wild type BRCA1 and BRCA2. To better understand the molecular basis by which this allele increases risk for disease, we have generated a mouse in which the wild type CHEK2 (Chk2 in mouse) allele has been replaced with the 1100delC variant. Mouse embryo fibroblasts (MEFs) derived from these mice have an altered cell cycle profile in which a far greater proportion of cells are in S-phase and in G2 (4N) compared with wild type cells. The mutant cells show signs of spontaneous genomic instability as indicated by polyploidy and an increase in DNA double strand breaks.  相似文献   

4.
Somatic mutation is a fundamental component of acquired immunity. Although its molecular basis remains undetermined, the sequence specificity with which mutations are introduced has provided clues to the mechanism. We have analyzed data representing over 1700 unselected mutations in V gene introns and nonproductively rearranged V genes to identify the sequence specificity of the mutation spectrum-the distribution of resultant nucleotides. In other words, we sought to determine what effects the neighboring bases have on what a given base mutates "to." We find that both neighboring bases have a significant effect on the mutation spectrum. Their influences are complicated, but much of the effect can be characterized as enhancing homogeneity of the mutated DNA sequence. In contrast to what has been reported for the sequence specificity of the "targeting" mechanism, that of the spectrum is notably symmetric under complementation, indicating little if any strand bias. We compared the spectrum to that found previously for germline mutations as revealed by analyzing pseudogene sequences. We find that the influences of nearest neighbors are quite different in the two datasets. Altogether, our findings suggest that the mechanism of somatic hypermutation is complex, involving two or more stages: introduction of mis-pairs and their subsequent resolution, each with distinct sequence specificity and strand bias.  相似文献   

5.
A spontaneous mouse hair mutation was identified in a C3H/HeN colony. The mode of inheritance of the mutation was semidominant, with incomplete penetrance when heterozygous. The trait is controlled by a single locus hague (Hag), which was mapped to the telomeric region of chromosome 15. This mutation was shown to be unstable, since its transmission could be switched from semidominant to recessive. To identify the causative gene and the nature of the mutation, hague was introduced into a high-resolution and high-density molecular genetic map. Over 2000 meioses were analyzed and the mutation was mapped to the keratin 2 complex genes. A YAC and BAC physical map of the critical region was then constructed and the gene involved was located in a 600- to 800-kb-long segment. Fourteen genes were mapped to this region; of these, 11 were expressed in the skin (5 epidermic cytokeratin and 6 hard keratin genes), but none were mutated in hague mice.  相似文献   

6.
Rib-vertebrae (rv) is an autosomal recessive mutation in mouse that affects the morphogenesis of the vertebral column. Axial skeleton defects vary along the anterior-posterior body axis, and include split vertebrae and neural arches, and fusions of adjacent segments. Here, we show that defective somite patterning underlies the vertebral malformations and altered Notch signaling may contribute to the phenotype. Somites in affected regions are irregular in size and shape, epithelial morphology is disrupted, and anterior-posterior somite patterning is abnormal, reminiscent of somite defects obtained in loss-of-function alleles of Notch signaling pathway components. Expression of Dll1, Dll3, Lfng and Notch1 is altered in rv mutant embryos, and rv and Dll1(lacZ), a null allele of the Notch ligand Delta1, genetically interact. Mice double heterozygous for rv and Dll1(lacZ), show vertebral defects, and one copy of Dll1(lacZ) on the homozygous rv background enhances the mutant phenotype and is lethal in the majority of cases. However, fine genetic mapping places rv into an interval on chromosome seven that does not contain a gene encoding a known component of the Notch signaling pathway.  相似文献   

7.
Human l1 retrotransposition is associated with genetic instability in vivo   总被引:9,自引:0,他引:9  
Retrotransposons have shaped eukaryotic genomes for millions of years. To analyze the consequences of human L1 retrotransposition, we developed a genetic system to recover many new L1 insertions in somatic cells. Forty-two de novo integrants were recovered that faithfully mimic many aspects of L1s that accumulated since the primate radiation. Their structures experimentally demonstrate an association between L1 retrotransposition and various forms of genetic instability. Numerous L1 element inversions, extra nucleotide insertions, exon deletions, a chromosomal inversion, and flanking sequence comobilization (called 5' transduction) were identified. In a striking number of integrants, short identical sequences were shared between the donor and the target site's 3' end, suggesting a mechanistic model that helps explain the structure of L1 insertions.  相似文献   

8.
9.
The cold-sensitive fcsA29 mutation of Escherichia coli was found to be a new type of cold-sensitive allele of the polA gene encoding DNA polymerase I, caused by an Asp(116)-->Asn change in the 5'-->3' exonuclease domain. The fcsA29 mutant showed typical polA mutant phenotypes such as UV sensitivity and unacceptability of recA mutation. Cold-sensitive growth of the mutant was suppressed by introduction of a sulA mutation, indicating that cell filamentation was due to the SOS response.  相似文献   

10.
During the G0/G1-S phase transition, the timely synthesis and degradation of key regulatory proteins is required for normal cell cycle progression. Two of these proteins, c-Myc and cyclin E, are recognized by the Cdc4 E3 ligase of the Skp1/Cul1/Rbx1 (SCF) complex. SCF(Cdc4) binds to a similar phosphodegron sequence in c-Myc and cyclin E proteins resulting in ubiquitylation and degradation of both proteins via the 26 S proteosome. Since the prolyl isomerase Pin1 binds the c-Myc phosphodegron and participates in regulation of c-Myc turnover, we hypothesized that Pin1 would bind to and regulate cyclin E turnover in a similar manner. Here we show that Pin1 regulates the turnover of cyclin E in mouse embryo fibroblasts. Pin1 binds to the cyclin E-Cdk2 complex in a manner that depends on Ser384 of cyclin E, which is phosphorylated by Cdk2. The absence of Pin1 results in an increased steady-state level of cyclin E and stalling of the cells in the G1/S phase of the cell cycle. The cellular changes that result from the loss of Pin1 predispose Pin1 null mouse embryo fibroblasts to undergo more rapid genomic instability when immortalized by conditional inactivation of p53 and sensitizes these cells to more aggressive Ras-dependent transformation and tumorigenesis.  相似文献   

11.
The Salmonella genomic island 1 is an integrative mobilizable element   总被引:6,自引:0,他引:6  
Salmonella genomic island 1 (SGI1) is a genomic island containing an antibiotic resistance gene cluster identified in several Salmonella enterica serovars. The SGI1 antibiotic resistance gene cluster, which is a complex class 1 integron, confers the common multidrug resistance phenotype of epidemic S. enterica Typhimurium DT104. The SGI1 occurrence in S. enterica serovars Typhimurium, Agona, Paratyphi B, Albany, Meleagridis and Newport indicates the horizontal transfer potential of SGI1. Here, we report that SGI1 could be conjugally transferred from S. enterica donor strains to non-SGI1 S. enterica and Escherichia coli recipient strains where it integrated into the recipient chromosome in a site-specific manner. First, an extrachromosomal circular form of SGI1 was identified by PCR which forms through a specific recombination of the left and right ends of the integrated SGI1. Chromosomal excision of SGI1 was found to require SGI1-encoded integrase which presents similarities to the lambdoid integrase family. Second, the conjugal transfer of SGI1 required the presence of a helper plasmid. The conjugative IncC plasmid R55 could thus mobilize in trans SGI1 which was transferred from the donor to the recipient strains. By this way, the conjugal transfer of SGI1 occurred at a frequency of 10(-5)-10(-6) transconjugants per donor. No transconjugants could be obtained for the SGI1 donor lacking the int integrase gene. Third, chromosomal integration of SGI1 occurred via a site-specific recombination between a 18 bp sequence found in the circular form of SGI1 and a similar 18 bp sequence at the 3' end of thdF gene in the S. enterica and E. coli chromosome. SGI1 appeared to be transmissible only in the presence of additional conjugative functions provided in trans. SGI1 can thus be classified within the group of integrative mobilizable elements (IMEs).  相似文献   

12.
Saccharomyces cerevisiae chl1 mutants have a significant increase in the rate of chromosome missegregation. CHL1 encodes a 99 kDa predicted protein with an ATP binding site consensus, a putative helix–turn–helix DNA binding motif, and homology to helicases. Using site-directed mutagenesis, I show that mutations that are predicted to abolish ATP binding in CHL1 inactivate its function in chromosome segregation. Furthermore, overexpression of these mutations interferes with chromosome transmission of a 125 kb chromosome fragment in a wild-type strain. Polyclonal antibodies against CHL1 show that CHL1 is predominantly in the nuclear fraction of S.cerevisiae. CHL1 function is more critical for the segregation of small chromosomes. In chl1Δ1/chl1Δ1 mutants, artificial circular or linear chromosomes <150 kb in size exhibit near random segregation (0.12 per cell division), whereas all chromosomes tested >225 kb were lost at rates (5 × 10–3 per cell division) comparable to that observed for endogenous chromosome III. These results reveal an important role for ATPases/DNA helicases in chromosome segregation. Such enzymes may alter DNA topology to allow loading of proteins involved in maintaining sister chromatid cohesion.  相似文献   

13.
14.
The interaction of genetic drift, mutation, and selection in a random environment is investigated using an asymptotic analysis based on assumptions of weak mutation and strong selection. It is shown that genetic drift can be a potent force for removing variation from the population when the random environment tends to occasionally push alleles down to low frequencies.  相似文献   

15.
The introduction of a cytidine in place of one of the two single stranded uridines in the R17 replicase translational operator results in a much tighter binding to R17 coat protein. The complex containing the variant RNA is stable to gel electrophoresis and has a binding constant about 50 times greater than the one with wild type RNA. The nearly thirty percent increase in the free energy of binding for the variant RNA is primarily due to a more favorable enthalpy of interaction. A possible explanation for this surprising result is that the U to C change leads to a greater extent of formation of a transient covalent complex between the protein and the RNA.  相似文献   

16.
Thp is a large deletion on chromosome 17 which includes the maternal lethal gene Tme. Documentation of inheritance patterns suggests that Tme is an imprinted gene which is required for viability; maternal deletion is lethal while paternal deletion is viable. However, paternal transmission of Thp is rarely the expected 50%. We show here that paternally inherited Thp is lethal in some strains, providing evidence of an incompletely penetrant, dosage sensitive lethal allele of a locus that probably maps to the hairpin tail region of chr. 17. Interpretation of the various phenotypes associated with loss of the putative Tme gene, lgf2r, may need to be revised in view of these observations. Dev Genet 20:23–28, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
RecA in Escherichia coli and its homolog, ScRad51 in Saccharomyces cerevisiae, are known to be essential for recombinational repair. The homolog of RecA and ScRad51 in mice, MmRad51, was mutated to determine its function. Mutant embryos arrested early during development. A decrease in cell proliferation, followed by programmed cell death and chromosome loss, was observed. Radiation sensitivity was demonstrated in trophectoderm-derived cells. Interestingly, embryonic development progressed further in a p53 null background; however, fibroblasts derived from double-mutant embryos failed to proliferate in tissue culture.  相似文献   

18.
《Free radical research》2013,47(5):404-412
Abstract

Nerve growth factor (NGF) is one of the several structurally related proteins, named neurotrophins (NTs), that regulate neuronal survival, development, function, and plasticity. Moreover, NGF is an important activator of antioxidant mechanisms. These NGF functions are mediated by tropomyosin-related kinase receptor A (TrkA). Although NTs and their receptors have been shown to be expressed in visceral tissues, the extent to which NTs are involved in the physiology of visceral tissues is less clear. NGF is the most expressed NT in adult mouse livers. Although NGF is an important modulator of antioxidant mechanisms in neural tissues, few studies describe the relationship between oxidative stress and NGF expression in the liver. In this study, we demonstrate that ngfb mRNA is positively modulated in mouse livers after oxidative injury via intraperitoneal injection of 14 mg/kg sodium arsenite, 6 mmol/kg L-buthionine-S-R-sulfoximine (BSO), or 300 mg/kg acetaminophen (APAP). In addition to the upregulation of ngfb, we observed the phosphorylation of the NGF high-af?nity receptor TrkA in the liver as well as the downstream phosphorylation of Akt, NF-kB nuclear migration and iκbα and tx-1 mRNA upregulation. These effects were abolished when a neutralizing anti-NGF antibody was used. Furthermore, this anti-NGF antibody alone induced oxidative stress in the liver by decreasing the reduced glutathione, increasing the oxidized glutathione, and downregulating tx-1 mRNA. Thus, NGF plays a critical role in liver protection against oxidative stress and xenobiotic injury as well as maintains a reduced thiol state.  相似文献   

19.
The mouse seminal vesicle shape (svs) mutation is a spontaneous recessive mutation that causes branching morphogenesis defects in the prostate gland and seminal vesicles. Unlike many other mutations that reduce prostatic and/or seminal vesicle branching, the svs mutation dramatically reduces branching without reducing organ growth. Using a positional cloning approach, we identified the svs mutant lesion as a 491 bp insertion in the tenth intron of Fgfr2 that results in changes in the pattern of Fgfr2 alternative splicing. An engineered null allele of Fgfr2 failed to complement the svs mutation proving that a partial loss of FGFR2(IIIb) isoforms causes svs phenotypes. Thus, the svs mutation represents a new type of adult viable Fgfr2 allele that can be used to elucidate receptor function during normal development and in the adult. In the developing seminal vesicles, sustained activation of ERK1/2 was associated with branching morphogenesis and this was absent in svs mutant seminal vesicles. This defect appears to be the immediate downstream effect of partial loss of FGFR2(IIIb) because activation of FGFR2(IIIb) by FGF10 rapidly induced ERK1/2 activation, and inhibition of ERK1/2 activation blocked seminal vesicle branching morphogenesis. Partial loss of FGFR2(IIIb) was also associated with down-regulation of several branching morphogenesis regulators including Shh, Ptch1, Gli1, Gli2, Bmp4, and Bmp7. Together with previous studies, these data suggest that peak levels of FGFR2(IIIb) signaling are required to induce branching and sustain ERK1/2 activation, whereas reduced levels support ductal outgrowth in the prostate gland and seminal vesicles.  相似文献   

20.
Juriloff DM  Harris MJ  Mah DG 《Genomics》2005,85(1):139-142
The BALB/cGa mouse strain and its descendants, now called the SELH/Bc strain, have produced two waves of high frequency of spontaneous heritable mutations. One of these, the recessive lidgap-Gates (lg(Ga)) mutation, causes the same open-eyelids-at-birth phenotype as the gene knockout mutations of Map3k1 and co-maps to distal Chr 13. The lg(Ga) mutation is demonstrated to be a 27.5-kb deletion of exons 2-9 in the Map3k1 gene, the first spontaneous mutant allele described at this locus. The lg(Ga) mutation is consistent with a pattern suggesting that the waves of mutation in BALB/cGa and its descendants tend to be large deletions or ETn insertions, whose elevated rate of occurrence is due to an unknown mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号