首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Putrescine, spermidine, spermine and cadaverine have been identified and quantified in rice phloem sap and shoot extracts by HPLC. It is suggested that diamines, putrescine and cadaverine, easily migrate into the phloem, while movement of a triamine, spermidine, and a tetramine, spermine, tend to be restricted. Spermine especially seems to be the most immobile among polyamines. Thus it is indicated that movement of polyamines into phloem is decreased with increasing number of amino groups. Indole-3-acetic acid and abscisic acid in rice phloem sap were also analyzed by HPLC and it is suggested that indole-3-acetic acid is transported freely into phloem, while abscisic acid is much more actively exuded into phloem.  相似文献   

2.
Thirteen endophytic fungi were isolated from roots of three orchid species, Spathoglottis affinis, Paphiopedelum bellatulum and Phaius tankervilleae. Of these, three fungal isolates produced high levels of indole-3-acetic acid (IAA) in culture medium supplemented with 2 mg/ml of L-tryptophan, and were selected for further analysis. Morphological characteristics and a phylogenetic analysis based on an alignment of internal transcribed spacer regions of nuclear rDNA indicated that the fungal isolates CMU-SLP 007 and CMU-NUT 013 belonged to family Tulasnellaceae, genus Tulasnella (the anamorphic genus Epulorhiza) and the fungal isolate CMU-AU 006 belonged to Colletotrichum gloeosporioides. These three fungal isolates produced maximum levels of IAA when grown in a culture medium supplemented with 4 mg/ml of L-tryptophan (C. gloeosporioides CMU-AU 006, 243.56 μg/ml and Tulasnella sp. CMU-SLP 007, 155.63 μg/ml) and 6 mg/ml of L-tryptophan (Tulasnella sp. CMU-NUT 013, 104.03 μg/ml). Thin layer chromatography revealed that all fungal IAA presented the same Rf value as the standard IAA. The biological activity of fungal IAA showed that it increased the length of stem forming roots and the number of roots of kidney bean (Phaseolus vulgaris), promoted seed germination, the length of roots and root to shoot ratio of corn (Zea mays) and increased the elongation of rice (Oryza sativa) coleoptiles when compared with all controls (water and culture medium treatments). In addition, the results of all biological activities using fungal IAA indicated that the quality of fungal IAA were similar to standard IAA.  相似文献   

3.
A radioimmunoassay technique for indole-3-acetic acid is described. The method has successfully been used to measure extractable indole-3-acetic acid in fungal and plant materials and is able to detect as little as 0.3 pmol. As non-radioactive antigen the methyl ester of indole-3-acetic acid is used and the radioactive antigen is tritiated. An acid-catalyzed esterification of indole-3-acetic acid is used for conversion into methyl ester. The measuring range of the assay is 0.3–10 pmol. In the assay, separation of free and bound fractions is achieved by dextran-coated charcoal, leaving the bound fraction in the supernatant.  相似文献   

4.
Concentrations of abscisic acid and indole-3-acetic acid were measured by GC-MS-SIM in the shoot bark of clonal apple rootstocks (M.27, M.9, MM.106 and MM.111) when the rootstocks were growing actively in the UK. These rootstocks are known to exhibit a wide range of control of tree size when grafted to a common scion. Shoot bark of the dwarfing rootstocks (M.27 and M.9) contained higher concentrations than the more vigorous rootstocks (MM.106 and MM.111) of ABA. Concentrations of ABA increased from May to July, followed by a decline in August. Only the month of sampling showed any significant influence on the concentration of IAA in shoot bark; however, there was a general increase, although not significant statistically, in IAA concentration with the increasing invigoration-capacity of the rootstock. At each sampling date the dwarfing rootstocks showed greater ratios of ABA:IAA than the invigorating rootstocks and generally the ratio for each rootstock increased from May to July, except for M.27 which showed the smallest ratio in June and the largest ratio in August. The results are discussed in relation to the generally accepted control exerted by the rootstocks on tree size and the possible influence of ABA on polar auxin transport.  相似文献   

5.
This study examines two ways plant hormones might influence membrane processes, effects on overall permeability and modifications of specific ion channels. Abscisic acid (ABA) and indole-3-acetic acid (IAA) greatly enhanced erythritol permeability in mixed egg lecithin bilayers. In single component dioleoylphosphatidylcholine bilayers ABA was less effective than IAA, while 2,4-dichlorophenoxyacetate (2,4-D) did not affect either system or alter their ABA response. In Myxicola axons ABA and IAA had no effect, while 2,4-D (10 uM) caused a depolarizing shift of voltage-dependent Na+ and K+ activation by 25 +/- 4 mV and 15 +/- 3 mV, consistent with internal negative surface charge changes of -0.002 e-/A2 and -0.0007 e-/A2. We conclude that both generalized and ion channel-directed effects may link plant hormones and intracellular regulation.  相似文献   

6.
Ultrastructural alterations in mesophyll cells as well as variations in bulk leaf endogenous ABA and IAA concentrations were studied in water-stressed field-grown plants of Fatsia japonica. Under water deficit cellular membranes were modified and an increase in vesicles was observed. The main damage to the chloroplasts included thylakoid swelling and disruption of the chloroplast envelope. Concomitant variations in abscisic acid and indole-3-acetic acid were observed. Despite the expected increased in endogenous ABA concentration in relation to water stress, after the highest concentration of ABA, observed at predawn in severely stressed plants (29-1), there was a sharp decline from 2768 pmol g fw–1 to 145 pmol g fw–1; thus in severely stressed plants ABA levels were not related to changes in bulk leaf ABA contents. Water stress did not influence the concentrations of indole-3-acetic acid, although the increase in the endogenous abscisic acid concentration could be related with the ultrastructural changes.Abbreviations ABA abscisic acid - IAA indole-3-acetic acid - leaf water potential  相似文献   

7.
A new enzyme, named indole-3-aldehyde oxidase (IAldO), was identified in citrus ( Citrus sinensis L. Osbeck cv. Shamouti) leaves. The enzyme was partially purified by (NH4)2SO4 fractionation. Sephadex G-200 gel filtration and DEAE-cellulose ion exchange chromatography. IAldO catalyzes the oxidation of indole-3-aldehyde (IAld) to indole-3-carboxylic acid (ICA) with the production of H2O2. The enzyme is highly specific for IAld. The apparent KM of the enzyme for IAld is 19 μ M . The optimum oxidation of IAld occurs at pH 7. 5. The molecular mass of the enzyme, as determined by Sepharose-6B gel filtration, is about 200 kDa. Based on inhibitor studies, it is concluded that IAldO is not a flavin-linked oxidase and there is no requirement for free sulfhydryl groups or divalent cations for maximum activity. The enzyme is strongly inhibited by benzaldehyde. Ethylene pretreatment, wounding and aging of leaf tissues did not affect enzyme activity, suggesting that the enzyme is constitutive in citrus tissues.  相似文献   

8.
Stem segments excised from light-grown Pisum sativum L. (cv. Little Marvel) plants elongated in the presence of indole-3-acetic acid and its precursors, except for L-tryptophan, which required the addition of gibberellin A, for induction of growth. Segment elongation was promoted by D-tryptophan without a requirement for gibberellin, and growth in the presence of both D-tryptophan and L-tryptophan with gibberellin A3, was inhibited by the D-aminotransferase inhibitor D-cycloserine. Tryp-tophan racemase activity was detected in apices and promoted conversion of L-tryptophan to the D isomer; this activity was enhanced by gibberellin A3. When applied to apices of intact untreated plants, radiolabeled D-tryptophan was converted to indole-3-acetic acid and indoleacetylaspartic acid much more readily than L-tryptophan. Treatment of plants with gibberellin A3, 3 days prior to application of labeled tryptophan increased conversion of L-tryptophan to the free auxin and its conjugate by more than 3-fold, and led to labeling of N-malonyl-D-tryptophan. It is proposed that gibberellin increases the biosynthesis of indole-3-acetic acid by regulating the conversion of L-tryptophan to D-tryptophan, which is then converted to the auxin.  相似文献   

9.
Quantitative determinations by gas chromatography-mass spectrometry ofindole-3-acetic acid (IAA) and abscisic acid (ABA) in growing leaves ofColeusblumei plants show parallel declines in leaf concentrations of bothhormones,except in leaf number 3 (about three-fourths of full size) where IAA level wasthe lowest of those measured. Expansion of the most recently unfurled leaf tofull size serves, in effect, to dilute both IAA and ABA about 1.7 to 1.Althoughabsolute levels of leaf IAA varied as much as an order of magnitude from onebatch of plants to another, ABA levels were proportional to the IAA level withan overall correlation coefficient of 0.91. Evidence, both correlative andcausal, for the determination of ABA status by IAA—and of IAA status byABA—in leaves and other developing organs is summarized.  相似文献   

10.
The effects of glyphosate [N-(phosphonomethyl)glycine] on endogenous in-dole-3-acetic acid (IAA) level, IAA oxidase activity, and possible interactions with alterations in phenolic metabolism have been examined in yellow nutsedge ( Cyperus esculentus L.) plants. IAA was quantified by flame ionization detector gas-chroma-tography, phenols were quantified by high-performance liquid chromatography and the auxin protection and the IAA oxidase activities were determined spectrophoto-metrically and/or polarographically. A significant increase in IAA content was recorded after glyphosate treatment. No IAA oxidase activity was detected in control and treated tissues. Auxin protection activity and gentisic acid were present in all extracts assayed, and their concentrations increased as the rate of glyphosate application increased. Addition of gentisic acid to an extract of control plants increased the auxin protection detected. These findings indicate that the high levels of free IAA in yellow nutsedge leaves after glyphosate application are due to the inhibition of the IAA oxidase activity by increased levels of the IAA-protecting phenol gentisic acid.  相似文献   

11.
No influence of IAA on the endogenous estrogen content in bean plants was stated. At the same time kinetin was found to increase and abscisic acid to decrease the amounts of estrogens.  相似文献   

12.
The effects of applying indole-3-butyric acid (IBA) for periods up to 48 h were examined in difficult-to-root microcuttings (from newly-established cultures) and in easy-to-root microcuttings (from long-term subcultures) of Jonathan apple (Malus X domestica Borkh). In easy-to-root material, 20% of the microcuttings produced roots in the absence of IBA, while 6 h exposure to 10 M IBA gave 100% rooting of microcuttings. In contrast, root formation in difficult-to-root material was IBA-dependent. Maximum rooting of these microcuttings (50%) required 24 h exposure to 10 M IBA.Variation in the endogenous levels of free indole-3-acetic acid (IAA) during the course of root induction was similar in microcuttings of both types but there were marked differences in endogenous abscisic acid (ABA) levels. In easy-to-root microcuttings ABA remained at a constant low level, but in difficult-to-root material ABA exhibited marked fluctuations and was present at higher concentrations than in easy-to-root microcuttings.  相似文献   

13.
Application of indole-3-acetic acid (IAA) with a pollen growth inhibitor, aspterric acid (AA), results in the recovery of normal pollen development. In contrast, application of gibberellin (GA3) with AA do not induce normal pollen growth. In addition, application of different concentrations of IAA with AA shortens the period of growth from bolting to first flowering as compared to that treated with AA alone. Furthermore, stem length and number of flower bud treated with IAA and AA were similar to those of control. These results suggest, that IAA may play an important role in reproductive growth of A. thaliana.  相似文献   

14.
Cuttings of pea (Pisum sativum L. cv Marma) were treated with 1-aminocyclopropane-l-carboxylic acid (ACC). This treatment caused increased ethylene production and reduction of root formation. The effect of 0.1 mM ACC on the level of endogenous indole-3-acetic acid (IAA) in the rooting zone and in the shoot apex was analyzed by gas chromatography-single ion monitoring mass spectrometry or by high pressure liquid chromatography with fluorimetric detection (HPLC). Concentrations of indole-3-acetylaspartic acid (IAAsp) in the stem bases were also determined using HPLC. The ACC treatment had little effect on the IAA level in the base measured after 24 h, but caused a considerable decrease during the 3 following days. IAAsp increased in the base on days 1, 2 and 3 and then declined. The build up of IAAsp in the base was not affected by ACC during the first two days of the treatment, but later this conjugate decreased more rapidly than in controls. No effect of the ACC treatment was found on the level of IAA in the apex. IAA (1 µM) applied to the cuttings during 24 h reduced the number of roots formed. The possibility that IAA-induced ethylene is involved in this response was investigated.Our results support earlier evidence that the inhibitory effect of ethylene on rooting in pea cuttings is due to decreased IAA levels in the rooting zone. The inhibitory effect of applied IAA is obtained if the internal IAA level is maintained high during the first 24 h, whereas stimulation of rooting occurs if the internal IAA level remains high during an extended period of time. Our results do not support the suggestion that ethylene mediates the inhibitory effect of applied IAA.  相似文献   

15.
Kai K  Wakasa K  Miyagawa H 《Phytochemistry》2007,68(20):2512-2522
A search was made for conjugates of indole-3-acetic acid (IAA) in rice (Oryza sativa) using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) in order to elucidate unknown metabolic pathways for IAA. N-beta-d-Glucopyranosyl indole-3-acetic acid (IAA-N-Glc) was found in an alkaline hydrolysate of rice extract. A quantitative analysis of 3-week-old rice demonstrated that the total amount of IAA-N-Glc was equal to that of IAA. A LC-ESI-MS/MS-based analysis established that the major part of IAA-N-Glc was present as bound forms with aspartate and glutamate. Their levels were in good agreement with the total amount of IAA-N-Glc during the vegetative growth of rice. Further detailed analysis showed that both conjugates highly accumulated in the root. The free form of IAA-N-Glc accounted for 60% of the total in seeds but could not be detected in the vegetative tissue. An incorporation study using deuterium-labeled compounds showed that the amino acid conjugates of IAA-N-Glc were biosynthesized from IAA-amino acids. IAA-N-Glc and/or its conjugates were also found in extracts of Arabidopsis, Lotus japonicus, and maize, suggesting that N-glucosylation of indole can be the common metabolic pathway of IAA in plants.  相似文献   

16.
Growth of axillary buds on the rhizomes of Elytrigia repens (L) Nevski is strongly dominated by the rhizome apex, by mechanisms which may involve endogenous hormones. We determined the distribution of indole-3-acetic acid (IAA) and abscisic acid (ABA) in rhizomes and measured (by gas-chromatography-mass spectrometry) their content in axillary buds after rhizomes were decapitated. The same measurements were also made in buds induced to sprout by removing their subtending scale leaves. The ABA content tended to be higher in the apical bud and in the axillary buds than in the adjacent internodes, and tended to decline basipetally in the internodes and scale leaves. IAA was similary distributed, except that there was less difference between the buds and other rhizome parts. After rhizomes were decapitated, the ABA content of the first axillary bud declined to 20% of that of control values within 24 h, while the IAA content showed no marked tendency to change. The ABA content also declined within 12 h in the first axillary bud after rhizomes were denuded, while the content of IAA tended to increase after 6 h. These changes occurred before the length of the first axillary bud increased 24–48 h after rhizomes were decapitated or denuded. We conclude that the release of axillary buds from apical dominance in E. repens does not require IAA content to be reduced, but is associated with reduced ABA content.  相似文献   

17.
18.
Mass spectra provide definitive identification of indole-3-acetic acid and abscisic acid in shoots of Coleus blumei, a species used for studying the hormone control of plant development since the early 1930s.  相似文献   

19.
Heavy metal toxicity in industrial polluted area is imparting serious consequences on crops. Two Pb-tolerant bacteria were isolated from maize growing in a dumping site of Attock Oil Refinery, Rawalpindi. The oil-polluted field had a higher geo-accumulation index (Igeo) and pollution load index (PLI) value for Pb than standard. The soil accumulated higher Cd, Zn, and Mn contents too. Maize leaves and roots accumulated higher Pb and Zn and exhibited biological concentration factor (BCF), biological accumulating factor (BAC), and translocation factor (TF) Zn. Two bacterial strains (Exiguobacterium aurantiacum and Bacillus firmus) were isolated from maize rhizosphere growing in an oil-polluted field and applied as bio-inoculants on maize in a greenhouse experiment for 80 days. Both bio-inoculants were tolerant to Pb at 500 ppm and had the potential to produce indole-3-acetic acid (IAA) in the presence or absence of Pb. Results revealed that single inoculation of bio-inoculants decreased Pb contents in the soil, leaves, and roots of maize by 30% over the control. Growth and physiological attributes of maize were also improved by 25% in a single application of bio-inoculants. Application of Pb with bio-inoculants decreased the efficiency of PGPR, and there were only 10–15% increases in growth and physiological attributes over single inoculation. Bio-inoculants exhibited the best results in the presence of IAA and Pb application by intensive root growth (60% better than control), reducing Pb toxicity (38%) and increasing growth and physiological attributes by 10–15% over single inoculation of bio-inoculants. Application of bio-inoculants with IAA may decrease the deleterious effects of Pb toxicity in oil-polluted agriculture fields.  相似文献   

20.
The interaction of free IAA and its amino acid conjugates on growth and development of cultured tomato hypocotyl tissue (Lycopersicon esculentum Mill. cv. Marglobe) was studied. In a nutrient medium containing 10 mol/L of benzyladenine, free IAA stimulated shoot and root development with little callus proliferation. In contrast, all IAA-amino acid conjugates tested supported mostly callus growth. Simultaneous application of free IAA and its conjugates resulted in the expression of mixed morphogenetic responses (i.e., both vigorous callus growth and organogenesis resulted). Growth kinetics and the effect of temporal exposure of the tissues to the bound and the free auxin suggest that some IAA-amino acid conjugates may specifically influence plant morphogenesis in ways that cannot be easily explained as simply a function of their slow hydrolysis to release free IAA.Abbreviations IAA indole-3-acetic acid - IAA-Ala N-(indol-3-ylacetyl)-l-alanine - IAA-Asp N-(indol-3-ylacetyl)-dl-aspartic acid - IAA-Lys N -(indol-3-ylacetyl)-l-lysine - IAA-Orn N -(indol-3-ylacetyl)-l-ornithine - IAA-Thr N-(indol-3-ylaetyl)-l-threonine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号