首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three aspects of the páramo vegetation's response to fires were investigated: the measurement of fire temperatures, general observations of changes in plant communities following fires, and monitoring the fate of individual plants after burning.Fire temperatures were strongly influenced by the physiognomy of the vegetation, dominated by tussocks of Calamagrostis spp. Temperatures were highest amongst the upper leaves of the tussock (sometimes >500°C). The middle levels of the tussock experienced temperatures in excess of 400°C, but in the dense leaf bases temperatures were often below 65°C. On the ground between tussocks, temperatures were variable, whereas 2 cm below ground temperatures failed to reach 65°C.Plant survival depended on the intensity of the fire and the plant's position within the tussock structure. Survival was often the result of high temperature avoidance (with buds shielded by other plant parts or buried beneath the soil surface).Post-fire Calamagrostis tiller mortality rates were high and tussock regrowth was slow. Some other species appear to maintain their populations by exploiting this recovery phase for seedling establishment on tussocks.Between tussocks, changes of occupancy at the level of the individual plants were greater after fire than in control vegetation. Most transitions were random. Those which departed from random often involved gaps and were related to post-fire mortality, regrowth from below-ground parts, colonisation or, in the case of a clonal mat-forming species, to spatial rearrangement of rosettes. Recovery was slower at higher altitude. Recovery was much slower in burned plots when the upper 2 cm of soil was removed (along with buried plant parts) compared with burned plots.Qualitative observations suggest that recovery may consist of a cyclical process, mediated by the serial dominance of several species that are physiognomically important.The frequency of fires determines the amount of fuel accumulated within grass tussocks and some plants may be unable to survive repeated burning. Chance survival of species in unburned patches of vegetation and random colonisation of gaps may be important determinants of subsequent community structure.  相似文献   

2.
Seeds ofPinus halepensis andPinus pinaster subsp.pinaster were subjected to four heat treatments (90, 110, 150 and 200 °C) for 1 and 5 min to investigate their tolerances to high temperatures resulting from fires. Another group of seeds of each species were not heated and considered as a control. Information on responses of seeds to high temperatures would help to determine whether or not the species are pyrophytes. Heating for 1 min at all temperatures did not affect the average germination ofPinus halepensis seeds whereas that ofP. pinaster subsp.pinaster seeds was decreased significantly when they were heated to 200 ° C. HoweverP. pinaster seeds were more resistant than that ofP. halepensis when heat treatment was 150 °C for 5 min. Data obtained also indicated that, in general,P. halepensis andP. pinaster subsp.pinaster seed germination is not favoured by a temperature increase than can be reached in soils during a fire. Thus, the species are not pyrophytes but colonizers of burnt sites.  相似文献   

3.
Predicting the effects of climate change requires understanding complex interactions among multiple abiotic and biotic factors. By influencing key interactions among host species, parasites can affect community and ecosystem structuring. Yet, our understanding of how multiple parasites and abiotic factors interact to alter ecosystem structure remains limited. To empirically test the role of temperature variation and parasites in shaping communities, we used a multigenerational mesocosm experiment composed of four sympatric freshwater crustacean species (isopods and amphipods) that share up to four parasite species. Mesocosms were assigned to one of four different treatments with contrasting seasonal temperatures (normal and elevated) and parasite exposure levels (continuous and arrested (presence or absence of parasite larvae in mesocosm)). We found that parasite exposure and water temperature had interactive effects on the host community. Continuous exposure to parasites altered the community structure and differences in water temperature altered species abundance. The abundance of the amphipod Paracalliope fluviatilis decreased substantially when experiencing continuous parasite exposure and elevated water temperatures. Elevated temperatures also led to parasite-induced mortality in another amphipod host, Paracorophium excavatum. Contrastingly, isopod hosts were affected much less, suggesting increasing temperatures in conjunction with higher parasite exposure might increase their relative abundance in the community. Changes in invertebrate host populations have implications for other species such as fish and birds that consume crustaceans as well as having impacts on ecosystem processes, such as aquatic primary production and nutrient cycling. In light of climate change predictions, parasite exposure and rise in average temperatures may have substantial impacts on communities and ecosystems, altering ecosystem structure and dynamics.  相似文献   

4.
David Dudgeon 《Hydrobiologia》1985,120(2):141-149
During a 15-month investigation of the population dynamics of three caridean shrimp species in the Lam Tsuen River, New Territories, Hong Kong, the numbers of the commonest species, Neocaridina serrata (Stimpson)(Atyidae), were reduced as water temperatures fell. By contrast, Caridina lanceifrons Yu became more numerous during the winter. The relatively scarce Macrobrachium hainanense (Parisi)(Palaemonidae) tended to be more abundant during the summer, and the abundance of this species was directly correlated with that of N. serrata. The population size of these two species was positively correlated with water temperatures prevailing one and two months prior to the collection of samples, but there was no significant relationship between C. lanceifrons abundance and water temperature.All species exhibited similar growth patterns with an inflection at the attainment of sexual maturity, occurring after the (presumed) 14th moult for N. serrata and in the (presumed) 13th and 18th stadium for C. lanceifrons and M. hainanensis respectively. Ovigerous shrimps of all species were only recorded when water temperatures exceeded 20 °C and the % incidence of ovigerous N. serrata was positively correlated with prevailing temperatures. It is suggested that restriction of freshwater caridean breeding periods by low temperatures may be common in the subtropics while perennial breeding is more likely to be typical of tropical regions.The mean carapace length of N. serrata populations was negatively correlated with prevailing temperatures, but more strongly correlated with temperatures recorded one and two months prior to sampling when gametogenesis may have taken place. Smallest mean sizes were recorded in late summer upon the cessation of juvenile recruitment. N. serrata has a maximum longevity of approximately 12 months and reproduction occurs in the 7th month of life or later. The hatchlings are well developed and clutch size is not related to the size of the brooding female. An annual life cycle, as seen in N. serrata, may be typical of many small freshwater carideans.Department of Zoology, The University of Hong Kong  相似文献   

5.
Insect herbivory is thought to favour carbon allocation to storage in juveniles of shade‐tolerant trees. This argument assumes that insect herbivory in the understorey is sufficiently intense as to select for storage; however, understoreys might be less attractive to insect herbivores than canopy gaps, because of low resource availability and – at temperate latitudes – low temperatures. Although empirical studies show that shade‐tolerant species in tropical forests do allocate more photosynthate to storage than their light‐demanding associates, the same pattern has not been consistently observed in temperate forests. Does this reflect a latitudinal trend in the relative activity of insect herbivory in gap versus understorey environments? To date there has been no global review of the effect of light environment on insect herbivory in forests. We postulated that if temperature is the primary factor limiting insect herbivory, the effect of gaps on rates of insect herbivory should be more evident in temperate than in tropical forests; due to low growing season temperatures in the oceanic temperate forests of the Southern Hemisphere, the effect of gaps on insect herbivory rates should in turn be stronger there than in the more continental temperate climates of the Northern Hemisphere. We examined global patterns of insect herbivory in gaps versus understories through meta‐analysis of 87 conspecific comparisons of leaf damage in contrasting light environments. Overall, insect herbivory in gaps was significantly higher than in the understorey; insect herbivory was 50% higher in gaps than in understoreys of tropical forests but did not differ significantly between gaps and understories in temperate forests of either hemisphere. Results are consistent with the idea that low resource availability – and not temperature – limits insect herbivore activity in forest understoreys, especially in the tropics, and suggest the selective influence of insect herbivory on late‐successional tree species may have been over‐estimated.  相似文献   

6.
Climate change can cause major changes to the dynamics of individual species and to those communities in which they interact. One effect of increasing temperatures is on insect voltinism, with the logical assumption that increases in surface temperatures would permit multivoltine species to increase the number of generations per year. Though insect development is primarily driven by temperature, most multivoltine insect species rely on photoperiodic cues, which do not change from year‐to‐year or in response to climate warming, to initiate diapause. Thus, the relationship between climate change and voltinism could be complex. We use a phenology model for grape berry moth, Paralobesia viteana (Clemens), which incorporates temperature‐dependent development and diapause termination, and photoperiod‐dependent diapause induction, to explore historical patterns in year‐to‐year voltinism fluctuations. We then extend this model to predict voltinism under varying scenarios of climate change to show the importance of both the quality and quantity of accumulated heat units. We also illustrate that increases in mean surface temperatures > 2 °C can have dramatic effects on insect voltinism by causing a shift in the ovipositional period that currently is subject to diapause‐inducing photoperiods.  相似文献   

7.
Using experimental chicken houses at a site in central Argentina where the bug Triatoma infestans (Klug) is endemic, nine populations of this vector of Chagas disease were monitored during a 34-month period. Bug populations with four chickens as hosts were consistently larger than those with two chickens as hosts. Age structure of the bug population followed a similar pattern irrespective of the initial age structure. Egg to adult mortality was consistently around 98.5% and there was no consistent evidence for density-dependent mortality. There was some evidence for density dependence in fecundity and recruitment rates, but these were heavily constrained by low temperatures during the winter months. Nymphal development rates correlated most strongly with mean minimum temperatures rather than with mean maximum temperatures. We conclude that vector control using insecticides against this species would be most effective at the onset of winter, when recovery of any surviving populations would be inhibited by low temperatures.  相似文献   

8.
云南瑞丽桔小实蝇成虫种群数量变动及其影响因子分析   总被引:11,自引:1,他引:10  
陈鹏  叶辉  刘建宏 《生态学报》2006,26(9):2801-2809
分别于1997、2000、2003和2004年通过诱蝇谜对云南瑞丽桔小实蝇种群动态进行了全年监测,并就气候因子及寄主植物对该种群变动的影响进行了系统分析.结果表明,桔小实蝇在瑞丽常年发生,当年11月至翌年1月份,桔小实蝇种群处于较低水平,2月份以后种群数量逐渐上升,至6月份形成种群的年增长高峰,此后至10月份种群数量迅速下降.经逐步回归分析表明,月均温、月平均最高温、月平均最低温、月极端最高温、月极端最低温和月雨日数是影响瑞丽桔小实蝇种群月变动的主要气候因子.通径分析和决策系统分析表明,月均温对种群数量变动具有正效应,是直接影响桔小实蝇种群变动的重要指标,月均最低温是影响种群增长的最主要的限制因素,月雨日数对种群动态的综合影响力最大.瑞丽各月平均温度位于桔小实蝇各虫态生长发育温度范围内,但11~翌年1月份的月均最低温低于桔小实蝇的适温范围,对桔小实蝇种群数量有一定抑制作用.2~5月份雨日数逐渐增多,雨量逐渐增大,有利于种群数量增长;7~8月份持续的强降雨过程被认为是桔小实蝇在该时期种群数量下降的主要原因.而瑞丽的多种瓜果成熟期的交替出现保证了桔小实蝇的食物供应.  相似文献   

9.
云南元江干热河谷桔小实蝇种群动态及其影响因子分析   总被引:23,自引:3,他引:23  
刘建宏  叶辉 《昆虫学报》2005,48(5):706-711
分别于1992、1998、2003和2004年在云南元江干热河谷通过性诱剂诱捕,对桔小实蝇雄性成虫数量变化进行了全年监测,并就气候因子及寄主植物对数量变动的影响进行了综合分析。桔小实蝇在元江干热河谷常年发生,当年12月至次年2月,桔小实蝇种群较低,3月以后逐渐上升,于6~8月形成增长高峰,9~11月种群迅速下降。近两年桔小实蝇种群数量较上世纪90年代明显增大。月均温、月均降雨量和寄主植物是影响元江桔小实蝇种群变动的主要因子。元江干热河谷各月均温在桔小实蝇适温区内,为其常年发生提供了温度条件。但12~2月的月平均最低温度低于桔小实蝇的适温下限,而5月的月平均最高温超过桔小实蝇的适温上限,这两方面对桔小实蝇种群均有一定抑制作用。元江夏季6至8月的月降雨量为100~150 mm,有助于桔小实蝇种群增长。芒果和甜橙是元江桔小实蝇最喜好的寄主水果,其种面积、挂果期是影响桔小实蝇种群变动的重要因素。气温、降雨和寄主植物通过各自的作用方式和发生时间综合影响着元江干热河谷地区桔小实蝇种群变动。  相似文献   

10.
The link between environmental temperature, physiological processes and population fluctuations is a significant aspect of insect pest management. Here, we explore how thermal biology affects the population abundance of two globally significant pest fruit fly species, Ceratitis capitata (medfly) and C. rosa (Natal fruit fly), including irradiated individuals and those expressing a temperature sensitive lethal (tsl) mutation that are used in the sterile insect technique. Results show that upper and lower lethal temperatures are seldom encountered at the field sites, while critical minimum temperatures for activity and lower developmental thresholds are crossed more frequently. Estimates of abundance revealed that C. capitata are active year-round, but abundance declines markedly during winter. Temporal autocorrelation of average fortnightly trap captures and of development time, estimated from an integrated model to calculate available degree days, show similar seasonal lags suggesting that population increases in early spring occur after sufficient degree-days have accumulated. By contrast, population collapses coincide tightly with increasing frequency of low temperature events that fall below critical minimum temperatures for activity. Individuals of C. capitata expressing the tsl mutation show greater critical thermal maxima and greater longevity under field conditions than reference individuals. Taken together, this evidence suggests that low temperatures limit populations in the Western Cape, South Africa and likely do so elsewhere. Increasing temperature extremes and warming climates generally may extend the season over which these species are active, and could increase abundance. The sterile insect technique may prove profitable as climates change given that laboratory-reared tsl flies have an advantage under warmer conditions.  相似文献   

11.
Annual monitoring of the population dynamics of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) using methyl eugenol-baited traps was conducted throughout the year during 1997, 2000, 2003 and 2004 in Ruili, Yunnan Province, China. Temperature, rainfall and host-plant species were analyzed with respect to population fluctuation of the fly. During the study periods the fruit fly occurred throughout the year. Its population remained low from November to January and increased steadily from February until it reached a peak in June. Afterwards, the population declined until October. The results of stepwise regression analysis indicated that monthly mean temperature, monthly mean maximum temperature, monthly mean minimum temperature, monthly extreme maximum temperature, monthly extreme minimum temperature, and monthly raining days were the major climatic factors influencing populations. Path and decision coefficient analyses indicated that the monthly mean temperature was the crucial factor influencing population fluctuation, the monthly mean minimum temperature was the crucial limiting factor indirectly influencing increase in population, and the comprehensive factors influencing fly population dynamics, namely, the monthly raining days were the strongest of all the other factors. Generally, the monthly mean temperatures fell within the ranges of temperatures suitable for development and reproduction of the fly. But the monthly mean minimum temperatures from November to January seemed to be lower and were suggested to be responsible for the low populations in this period. Monthly rainfall and rainy days steadily increased from February through June, and this explained the increase in population observed during this period. During periods of continuous heavy rain from July through August, the fruit fly population showed a remarkable decrease. Host plant species was another essential factor influencing the population fluctuations. Abundant fruit and melon species formed the food and breeding materials for the fly during the study periods.  相似文献   

12.
Shoot regeneration after prescribed burning or following the freezing temperatures of winter was monitored for nineteen heathland species present in an Arctostaphyleto-Callunetum community in northeast Scotland. Species whose renewal buds were near the surface of the ground started to grow earlier in the spring than species with renewal buds above the surface, but grouping species according to the position of their renewal bud (i.e. their life-form) did not account for all of the interspecific variation apparent. In the case of shoot regeneration after fire, species whose renewal buds were destroyed by fire because they were above-ground started to regenerate about the same time as species with belowground buds, protected from fire, but reached their maximum frequency of occurrence later. Grouping species by life-form was of limited value as a means of interpreting this interspecific variation in the timing of shoot regeneration after fire. It would be unwise to use plant life-form as the sole basis for interpreting or predicting a species' response to temperature stress when extreme temperatures occur regularly, as they do in heathland. The possible use of other plant traits to interpret and predict interspecific variation in the regeneration rate of heathland plants is discussed.Nomenclature follows Tutin et al. (1964–1980) for vascular plants. Acknowledgements. The Nature Conservancy Council and Mr J. J. Humphries kindly allowed Dinnet Moor to be used for the work presented here. One of us (RJR) received financial support for field work from the Natural Sciences and Engineering Research Council of Canada.  相似文献   

13.
Although the skin of most amphibians measured to date offers no resistance to evaporative water loss (EWL), some species, primarily arboreal frogs, produce skin secretions that increase resistance to EWL. At high air temperatures, it may be advantageous for amphibians to increase EWL as a means to decrease body temperature. In Australian hylid frogs, most species do not decrease their resistance at high air temperature, but some species with moderate resistance (at moderate air temperatures) gradually decrease resistance with increasing air temperature, and some species with high resistance (at moderate air temperatures) abruptly decrease resistance at high air temperatures. Lower skin resistance at high air temperatures decreases the time to desiccation, but the lower body temperatures allow the species to avoid their critical thermal maximum (CT(Max)) body temperatures. The body temperatures of species with low to moderate resistances to EWL that do not adjust resistance at high air temperatures do not warm to their CT(Max), although for some species, this is because they have high CT(Max) values. As has been reported previously for resistance to EWL generally, the response pattern of change of EWL at high air temperatures has apparently evolved independently among Australian hylids. The mechanisms involved in causing resistance and changes in resistance are unknown.  相似文献   

14.
Although the skin of most amphibians measured to date offers no resistance to evaporative water loss (EWL), some species, primarily arboreal frogs, produce skin secretions that increase resistance to EWL. At high air temperatures, it may be advantageous for amphibians to increase EWL as a means to decrease body temperature. In Australian hylid frogs, most species do not decrease their resistance at high air temperature, but some species with moderate resistance (at moderate air temperatures) gradually decrease resistance with increasing air temperature, and some species with high resistance (at moderate air temperatures) abruptly decrease resistance at high air temperatures. Lower skin resistance at high air temperatures decreases the time to desiccation, but the lower body temperatures allow the species to avoid their critical thermal maximum (CT(Max)) body temperatures. The body temperatures of species with low to moderate resistances to EWL that do not adjust resistance at high air temperatures do not warm to their CT(Max), although for some species, this is because they have high CT(Max) values. As has been reported previously for resistance to EWL generally, the response pattern of change of EWL at high air temperatures has apparently evolved independently among Australian hylids. The mechanisms involved in causing resistance and changes in resistance are unknown.  相似文献   

15.
Adult populations of stable flies were sampled along an altitudinal transect in Reunion Island to determine whether higher temperatures were associated with: (a) higher numbers of flies; (b) a longer season of infestation, and/or (c) different responses to warming in the cosmopolitan Stomoxys calcitrans (L) and the tropical Stomoxys niger niger Macquart (Diptera: Muscidae). Flies of both species were trapped at seven farms situated at four altitudes (100-1600 m a.s.l.) over a 90-week period. For both species, there were no relationships between the maximum or mean fly abundance and altitude. Only minimum abundance in winter was significantly higher at lower altitudes. Maximum and mean abundances differed significantly between nearby farms under similar climatic conditions. Seasonal fluctuations in fly abundance changed along the gradient. At lower altitudes, population growth started earlier after the winter but abundance declined earlier in summer, which resulted in a shift of the season of infestation. Seasonal fluctuations of both species were strongly related to climate variables at high altitude, mainly temperature. However, climate variables explained a decreasing proportion of the variations in abundance at lower altitudes. Stomoxys calcitrans was the most abundant species overall, but the proportion of S. n. niger increased significantly at lower altitudes and this species became predominant at 100 m a.s.l. It is concluded that stable fly infestations are unlikely to worsen in response to global warming. Maximum abundance is limited by local factors, possibly larval resources, which suggests that adequate husbandry practices could override the impact of climate change. Because S. n. niger tends to be the predominant pest at elevated temperatures, it is recommended that this species should not be introduced in areas where climate is changing.  相似文献   

16.
Reef shark species have undergone sharp declines in recent decades, as they inhabit coastal areas, making them an easy target in fisheries (i.e., sharks are exploited globally for their fins, meat, and liver oil) and exposing them to other threats (e.g., being part of by-catch, pollution, and climate change). Reef sharks play a critical role in coral reef ecosystems, where they control populations of smaller predators and herbivorous fishes either directly via predation or indirectly via behavior, thus protecting biodiversity and preventing potential overgrazing of corals. The urgent need to conserve reef shark populations necessitates a multifaceted approach to policy at local, federal, and global levels. However, monitoring programmes to evaluate the efficiency of such policies are lacking due to the difficulty in repeatedly sampling free-ranging, wild shark populations. Over nine consecutive years, we monitored juveniles of the blacktip reef shark (Carcharhinus melanopterus) population around Moorea, French Polynesia, and within the largest shark sanctuary globally, to date. We investigated the roles of spatial (i.e., sampling sites) and temporal variables (i.e., sampling year, season, and month), water temperature, and interspecific competition on shark density across 10 coastal nursery areas. Juvenile C. melanopterus density was found to be stable over 9 years, which may highlight the effectiveness of local and likely federal policies. Two of the 10 nursery areas exhibited higher juvenile shark densities over time, which may have been related to changes in female reproductive behavior or changes in habitat type and resources. Water temperatures did not affect juvenile shark density over time as extreme temperatures proven lethal (i.e., 33°C) in juvenile C. melanopterus might have been tempered by daily variation. The proven efficiency of time-series datasets for reef sharks to identify critical habitats (having the highest juvenile shark densities over time) should be extended to other populations to significantly contribute to the conservation of reef shark species.  相似文献   

17.
Population dynamics of the Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), were monitored year‐round using methyl eugenol‐baited traps in 2003, 2004, 2005 and 2006 in Baoshanba, Yunnan Province, China. Environmental factors including air temperature, rainfall and host‐plant species were analyzed with respect to the population dynamics. This species occurred only during April–November, with one yearly peak in August. The population fluctuation patterns with respect to season were identical in all study years. Correlation analysis and stepwise regression analysis indicated that air temperature, rainfall, sunlight hours and relative humidity were the major climatic factors that correlated with changes in the size of the fly population, and that monthly mean temperature, monthly sunlight hours and monthly relative humidity were most important. The seasonal increase in population size coincided with the fruiting period of the fly's host plants, but host fruit availability influenced the population size only when temperatures were sufficiently high. Cold temperatures may explain why there was no trap capture in the winter months. We believe that air temperature is the key factor explaining the seasonal occurrence of the fly population at Baoshanba.  相似文献   

18.
Elastic and inelastic components of neutron scattering from lyophilized myoglobin were measured at wavevector transfers, Q of 1.0, 1.4, 1.85, and 3.0 Å-1 and at temperatures of 77 and 298 K. The elastic scattering determines an overall effective mean square atomic displacement which was employed in a simple harmonic Langevin formalism to obtain effective force constants describing molecular deformations. These force constants and the inelastic data are compatible with alpha helices as a vibrating species at room temperature, and with amino acid residues as the vibrating entities at 77 K. The present measurements are consistent with recent molecular dynamics calculations.  相似文献   

19.
1. Large river floodplains are considered key nursery habitats for many species of riverine fish. The lower Volga River floodplains (Russian Federation) are still relatively undisturbed, serving as a suitable model for studying the influence of flooding and temperature on fish recruitment in floodplain rivers. 2. We examined the interannual variability in recruitment success of young‐of‐the‐year (YOY) fish in the lower Volga floodplain in relation to flood pulse characteristics and rising water temperatures in the spring. We sampled four areas with different flooding regimes, in three consecutive years (2006–2008). 3. Extensive areas with a long duration of flooding accommodated high densities of young fish. This suggests that extended inundation improves the recruitment success of river fish. In areas with extensive flooding, the biomass of YOY of most fish species was about three times higher in 2006 and 2007 than in 2008. We hypothesise that low spring temperatures in 2008 may have caused this reduced recruitment and that a flood synchronised with rising temperature enhances recruitment success. 4. Extensive flooding was particularly favourable for species characterised by large body size, delayed maturation, high fecundity and low parental investment, such as pike Esox lucius, roach Rutilus rutilus and ide Leuciscus idus. Gibel carp Carassius gibelio, a species tolerant of high temperature and hypoxia, did particularly well in small waterbodies in the driest parts of the floodplain. 5. Structural characteristics of floodplain waterbodies explained much of YOY fish density. These species–environment associations varied from year to year, but some species such as common bream Abramis brama, roach and gibel carp showed consistent relationships with structural habitat characteristics in all years, despite large interannual fluctuations in flood pulse and spring temperature.  相似文献   

20.
Global warming presents a threat to plant species distributed at montane or alpine altitudes if the topography does not allow upward shifts in distribution ranges. Nevertheless, the species might also benefit from increasing temperatures and secondary effects on dominant species (e.g. bark beetle outbreaks or summer drought affecting the canopy species). As a consequence, disturbance frequency in montane forests might increase and light availability for herb layer species will increase. We addressed these interactions in a common garden experiment in Central Germany at different altitudes, representing cold and moist vs. warm and dry conditions. We investigated three montane species with different life forms, including a herb (Trientalis europaea), a grass (Calamagrostis villosa) and a dwarf shrub (Vaccinium myrtillus) under three shading treatments (3%, 28% and 86% of full sunlight). We hypothesized that montane species are at a disadvantage in the lowland, with the dwarf shrub suffering more than the grass. Furthermore, we hypothesized an antagonistic interaction of increased temperature and increased light conditions. While T. europaea and V. myrtillus showed only slightly responses to low altitude conditions, C. villosa displayed a nearly fifteen fold increase in biomass production, despite higher observed herbivory levels in the lowland. We failed to show an antagonistic effect of increased temperature and increased light availability, as all study species suffered from deep shade conditions and grew best under full light conditions at both sites. In conclusion, both improved temperature and light conditions might be principally beneficial for the investigated boreal species, in particular for the grass species C. villosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号