首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A clone producing a polygalacturonase (EC 3.2.1.15) in Escherichia coli was isolated from a genomic library of Erwinia carotovora subspecies carotovora constructed in PUC18. The DNA segment carrying the corresponding structural gene, named pehA, contained an open reading frame (ORF) encoding a 402-amino-acid (aa) polypeptide with an Mr of 42,849. In E. carotovora the polygalacturonase was synthesized with a 26-aa cleavable signal peptide. The mature 376-aa PehA had a calculated Mr of 40,064 and a pl of 10.19. The pH optimum of the enzyme was about 5.5 and the temperature optimum was in the range 35-45 degrees C. Analysis of the reaction products of polygalacturonic acid hydrolysis indicated that the PehA protein is an endopolygalacturonase. No similarity was observed between the aa sequences of PehA and other pectic enzymes of erwinias. However, substantial similarity was detected within the C-terminal portions of PehA and a previously described tomato polygalacturonase, suggesting that the bacterial and eukaryotic polygalacturonases may have a common origin.  相似文献   

2.
DNA sequencing of the Agrobacterium vitis pehA gene revealed a predicted protein with an M(r) of 58,000 and significant similarity to the polygalacturonases of two other plant pathogens, Erwinia carotovora and Ralstonia (= Pseudomonas or Burkholderia) solanacearum. Sequencing of the N terminus of the PehA protein demonstrated cleavage of a 34-amino-acid signal peptide from pre-PehA. Mature PehA accumulated primarily in the periplasm of A. vitis and pehA+ Escherichia coli cells during exponential growth. A. vitis PehA released dimers, trimers, and monomers from polygalacturonic acid and caused less electrolyte leakage from potato tuber tissue than did the E. carotovora and R. solanacearum polygalacturonases.  相似文献   

3.
Q Huang  C Allen 《Journal of bacteriology》1997,179(23):7369-7378
Ralstonia solanacearum, which causes bacterial wilt disease of many plant species, produces several extracellular plant cell wall-degrading enzymes that are suspected virulence factors. These include a previously described endopolygalacturonase (PG), PehA, and two exo-PGs. A gene encoding one of the exo-PGs, pehB, was cloned from R. solanacearum K60. The DNA fragment specifying PehB contained a 2,103-bp open reading frame that encodes a protein of 74.2 kDa with a typical N-terminal signal sequence. The cloned pehB gene product cleaves polygalacturonic acid into digalacturonic acid units. The amino acid sequence of pehB resembles that of pehX, an exo-PG gene from Erwinia chrysanthemi, with 47.2% identity at the amino acid level. PehB also has limited similarity to plant exo-PGs from Zea mays and Arabidopsis thaliana. The chromosomal pehB genes in R. solanacearum wild-type strain K60 and in an endo-PG PehA- strain were replaced with an insertionally inactivated copy of pehB. The resulting mutants were deficient in the production of PehB and of both PehA and PehB, respectively. The pehB mutant was significantly less virulent than the wild-type strain in eggplant virulence assays using a soil inoculation method. However, the pehA mutant was even less virulent, and the pehA pehB double mutant was the least virulent of all. These results suggest that PehB is required for a wild-type level of virulence in R. solanacearum although its individual role in wilt disease development may be minor. Together with endo-PG PehA, however, PehB contributes substantially to the virulence of R. solanacearum.  相似文献   

4.
A set of gene fusions was constructed between the pehA gene encoding the secreted endopolygalacturonase (PehA) and the bla gene coding for a normally periplasmic β-lactamase (Bla). The resulting hybrid proteins were specifically and actively routed out of the cells via the Out-terminal branch of the general secretory pathway (GSP) in Erwinia carotovora subsp. carotovora (Ecc) , provided that no more than the last two amino acids (aa) of the PehA domain were excluded from the fusion. However, both PehA-Bla hybrid proteins and PehA variants lacking at least four aa from the C-terminus of the PehA accumulated in the periplasm. Also, overexpression of the gene fusions prevented extracellular targeting of the hybrid proteins. Site-directed mutagenesis of the codons −4 and −3 (encoding Asn-373 and Val-374, respectively) from the end of the pehA gene and analysis of the protein products suggested that the Val-374 was important both for the structure and secretion of PehA, while the Asn-373 proved to be insignificant. We conclude that: (i) the GSP of Ecc is capable of secreting heterologous proteins; (ii) as the PehA protein can accommodate C-terminal extensions, secretion can occur with no part of the proposed targeting signal lying within the C-terminal extremity of a secreted molecule; and (iii) residues within the C-terminus of PehA play a role in secretion, possibly through stabilization of a structure needed for proper exposition of the proposed targeting motif.  相似文献   

5.
Plant calcium can modulate a particular plant–pathogen interaction and have a decisive role in disease development. Enhanced resistance to the phytopathogenic enterobacterium Erwinia carotovora , the causal agent of bacterial soft rot disease, is observed in high-calcium plants. One of the main virulence determinants of E. carotovora , the PehA endopolygalacturonase, is specifically required in the early stages of the infection. Production of PehA was found to be dependent on the calcium concentration in the bacterial environment. An increase in extracellular calcium to mM concentrations repressed pehA gene expression without reducing or even enhancing expression of other extracellular enzyme-encoding genes of this pathogen. An increase in plant calcium levels could be correlated to enhanced resistance to E. carotovora infection and to an inhibition of in planta production of PehA. Ectopic expression of pehA from a calcium-insensitive promoter allowed E. carotovora to overcome this calcium-induced resistance. The results imply that plant calcium can constitute an important signal molecule in plant–pathogen interaction, which acts by modulating the expression of virulence genes of the pathogen.  相似文献   

6.
We have used an hrp-positive strain of the soft rot pathogen Erwinia carotovora subsp. carotovora to elucidate plant responses to this bacterial necrotroph. Purified virulence determinants, harpin (HrpN) and polygalacturonase (PehA), were used as tools to facilitate this analysis. We show that HrpN elicits lesion formation in Arabidopsis and tobacco and triggers systemic resistance in Arabidopsis. Establishment of resistance is accompanied by the expression of salicylic acid (SA)-dependent, but also jasmonate/ethylene (JA/ET)-dependent, marker genes PR1 and PDF1.2, respectively, suggesting that both SA-dependent and JA/ET-dependent defense pathways are activated. Use of pathway-specific mutants and transgenic NahG plants show that both pathways are required for the induction of resistance. Arabidopsis plants treated simultaneously with both elictors PehA, known to trigger only JA/ET-dependent defense signaling, and HrpN react with accelerated and enhanced induction of the marker genes PR1 and PDF1.2 both locally and systemically. This mutual amplification of defense gene expression involves both SA-dependent and JA/ET-dependent defense signaling. The two elicitors produced by E. carotovora subsp. carotovora also cooperate in triggering increased production of superoxide and lesion formation.  相似文献   

7.
The bacterial wilt pathogen Ralstonia solanacearum produces three extracellular polygalacturonases (PGs): PehA, PehB, and PehC. All three PGs hydrolyze pectin's polygalacturonic acid backbone, but each releases different reaction products. PehA and PehB contribute significantly to pathogen virulence, probably by facilitating root invasion and colonization. To determine the collective contribution of PGs to virulence and saprophytic survival, we cloned, characterized, and mutated the R. solanacearum pehC gene, which encodes a distinctive monogalacturonate-releasing exo-PG. The virulence of a pehC mutant on tomato was indistinguishable from that of its wild-type parent; thus, this exo-PG alone does not contribute significantly to wilt pathogenesis. Unexpectedly, a completely PG-deficient triple pehA/B/C mutant was slightly more virulent than a pehA/B mutant. PehC may degrade galacturonide elicitors of host defense, thereby protecting the pathogen from plant antimicrobial responses. A galacturonate transporter gene, exuT, is immediately downstream of pehC and the two genes are co-transcribed. It has been hypothesized that galacturonic acid released by PGs from plant cell walls nourishes bacteria during pathogenesis. To separate the pectolytic and nutrient-generating roles of the PGs, we made an exuT mutant, which still produces all three isozymes of PG but cannot uptake PG degradation products. This exuT mutant had wild-type virulence on tomato, demonstrating that metabolism of galacturonic acid does not contribute significantly to bacterial success inside the plant.  相似文献   

8.
9.
The uptake of maltose and maltodextrins in gram-negative bacteria is mediated by an ATP-dependent transport complex composed of a periplasmic maltose-binding protein (MBP) and membrane-associated proteins responsible for the formation of a membrane pore and generation of energy to drive the translocation process. In this work, we report the purification and in vitro functional analysis of MBP, encoded by the malE gene, of the plant pathogen Xanthomonas citri, responsible for the canker disease affecting citrus plants throughout the world. The X. citri MBP is composed of 456 amino acids, displaying a low amino acid identity (16% throughout the sequence) compared to the Escherichia coli K12 ortholog. The X. citri malE gene was cloned into a pET28a vector, and the encoded protein was expressed and purified by affinity chromatography as a His-tag N-terminal fusion peptide produced by the E. coli BL21 strain. Enhanced levels of soluble protein were achieved with static cultures kept overnight at 23 degrees C. Ability to bind immobilized amylose, the emission of intrinsic fluorescence and circular dichroism spectra indicated that the purified recombinant protein preserved both conformation and biological activity of the native protein. The availability of the recombinant MBP will contribute to the functional and structural analysis of the maltose and maltodextrin uptake system of the plant pathogen X. citri.  相似文献   

10.
The founder of the MiAMP1 protein family was originally isolated from Macadamia integrifolia and had antimicrobial activity in vitro. MiAMP1 was the first plant protein with a structure containing a βγ-crystallin precursor fold, a structural superfamily associated with antimicrobial proteins in other kingdoms. In recent times, expanding plant genomics information has revealed that genes encoding homologues of MiAMP1 are conserved across the plant kingdom from lycophytes, gymnosperms to early angiosperms (e.g. Amborella, Papaver) and some monocots (e.g. Zantedeschia, Zea, Sorghum). Many studies of plant–pathogen interactions in gymnosperms have demonstrated a potential role for MiAMP1 family members in defence against fungal pathogens. This commentary describes the discovery and diversity of this protein family and considers current evidence supporting, and future opportunities for substantiating, a role in defence in primitive plants, and why this role may have diminished in higher plants.  相似文献   

11.
Burkholderia glumae is an emerging seed-borne rice pathogen in many areas around the world. Previous studies have demonstrated that B. glumae produces two major virulence factors: the phytotoxin toxoflavin and a secreted lipase. This synthesis of both of these factors is regulated by an N-acyl homoserine lactone (AHL)-dependent, cell-density-dependent quorum-sensing regulation system. This study reports the production and secretion of two highly similar endo-polygalacturonases (designated PehA and PehB) by B. glumae. The two enzymes were purified to homogeneity and the corresponding genetic determinants were identified and characterized. When either polygalacturonase gene was inactivated, B. glumae retained rice virulence comparable to that of the wild-type parent strain. Furthermore, the role of AHL-dependent quorum sensing and of plant cell wall degradation compounds in their regulation was investigated.  相似文献   

12.
Frataxin, a nuclear-encoded mitochondrial protein, has been proposed to participate in Fe-S cluster assembly, mitochondrial energy metabolism, respiration, and iron homeostasis. However, its precise function remains elusive. Frataxin is highly conserved in living organisms with no major structural changes, in particular at the C-terminal protein domain, suggesting that it plays a key function in all organisms. Recently, a plant gene, AtFH, with significant homology to other members of the frataxin family has been described. To gain insight on the frataxin role in plants, the frataxin domain was expressed in Escherichia coli BL21-codonPlus (DE3)-RIL cells and purified using a Ni-chelating column. The purified protein, added to a mixture containing Fe(II) and H2O2, attenuates the Fenton reaction indicating that the recombinant plant frataxin is functional. The procedure described here produced high yield of 99% pure protein through only one chromatographic step, suitable for further structure-function studies.  相似文献   

13.
Neomycin phosphotransferase II (neo) is a selectable marker gene used extensively in plant transformation experiments. Here we evaluate immunological detection of its gene product (NPTII) as an alternative to widely used radioactive assays. We have taken a commercially available non-radioactive NPTII Enzyme linked-Immunosorbant Assay (ELISA) kit, modified the protocol for application to plant tissues, and used it to quantify levels of NPTII protein in transformed plants. The ELISA proved safe, economical and convenient to reliably screen and quantify NPTII protein in large numbers of plant samples. The sensitivity of the ELISA for NPTII detection in tobacco plants is at least an order of magnitude greater than a widely used radioactive gel assay. Using three replicates per sample, standard errors are low and the assay is highly reproducibleover time for tissue-cultured tobacco. However, background readings varied with plant species, and also with plant age for untransformed glasshouse-grown tobacco. It is therefore essential to ensure that untransformed controls are closely matched to test plant.  相似文献   

14.
15.
Jun a 3, a major allergenic protein in mountain cedar pollen, causes seasonal allergic rhinitis in hypersensitive individuals. Recombinant Jun a 3 was expressed in Nicotiana benthamiana interstitial fluid (300 microg/g leaf material) and Pichia pastoris (100 microg/ml media). Polyclonal anti-Jun a 3 and IgE antibodies from the sera of allergic patients both reacted with the recombinant protein. Of the two systems, recombinant protein from the plant apoplast contained fewer contaminating proteins. This method allows for a more convenient and inexpensive expression of the recombinant allergen, which will allow for further structural studies and may prove useful in diagnostic and/or immunotherapeutic strategies for cedar allergy.  相似文献   

16.
Plant structural complexity and host-finding by a parasitoid   总被引:9,自引:0,他引:9  
Summary There are three major components to plant structure relevant to searching parasitoids: 1) plant size or surface area, 2) the variation among plant parts (structural heterogeneity), such as seed heads, flowers and nectaries, and heterogeneous surfaces (e.g. glabrous, hirsute), and 3) the connectivity of parts or plant form (structural complexity). We examined the effect of structural complexity, while controlling for size and structural heterogeneity, on searching behaviors of Trichogramma nubilale in controlled environments. Females were presented with a structurally simple surface and a structurally complex one. Parasitism rates were 2.9 times higher on simple surfaces than on complex ones. Unexpectedly, when no hosts were present, searching time on simple surfaces was 1.2 times higher than on complex surfaces. This implies that structural complexity per se can affect the giving-up-time of a searching parasitoid. Searching efficiency, however, was the dominant process, and females found hosts on simple surfaces 2.4 times faster than on complex surfaces. Structural complexity can have a dramatic effect on the success of parasitoid search.  相似文献   

17.
Phytocystatins are cysteine proteinase inhibitors from plants implicated in the endogenous regulation of protein turnover, programmed cell death, and in defense mechanisms against pathogens. To date, only few cystatin genes have been characterized in most plant species. We have previously characterized the protein Canecystatin, the first cystatin described in sugarcane. In an attempt to study novel Canecystatins, we identified two ORFs encoding cystatins (referred as CaneCPI-2 and CaneCPI-3) using the data from the Sugarcane EST genome project. These ORFs were then subcloned and expressed in Escherichia coli using pET28 expression vector. High amounts (approximately 20 mg/L) of pure recombinant proteins were obtained by affinity chromatography in a single step of purification. Polyclonal antibodies against the recombinant Canecystatins were raised, allowing the immunodetection of the endogenous proteins in the plant tissues. Moreover, the proteins were able to inhibit papain in a fluorometric assay with K(i) values of 0.2 and 0.25 microM for CaneCPI-2 and CaneCPI-3, respectively. These findings contribute to a better understanding of the activity of sugarcane cystatins and encourage future activity and structural studies of these proteins.  相似文献   

18.
油棕等热带植物含有丰富的胡萝卜素和维生素E等类异戊二烯物质,类胡萝卜素和甾醇等类异戊二烯物质在植物生命活动中扮演重要角色,并且对保护人类健康具有重要意义,MEP途径是合成类异戊二烯的重要途径之一。DXS是MEP途径中的第一个限速酶,其功能在油棕等热带植物中极其保守。为了弄清油棕等热带植物DXS的结构和功能特点,该研究利用生物信息学工具和软件对以油棕等热带植物类异戊二烯合成关键基因DXS为对象,进行核酸和氨基酸序列的理化性质、蛋白质结构以及功能结构域等分析,探讨了不同物种间的亲缘关系。结果表明:DXS基因起始密码子均为ATG,终止密码子则分为TAG、TAA和TGA,DXS蛋白质属于不具有信号肽的亲水性蛋白,可能作为转运蛋白在叶绿体基质中发挥作用,未发现明显的跨膜结构域,磷酸化位点有36个,其中丝氨酸、苏氨酸和酪氨酸位点分别为17、11和8个,无规则卷曲和α-螺旋是蛋白质二级结构主要的结构元件,三级结构预测具有DXS酶特征,硫胺素焦磷酸盐结合位点和PLN02582保守结构域,不同植物DXS功能结构域非常保守,可以作为判断不同物种间亲缘关系的重要依据。该研究结果为油棕等热带植物DXS的结构、功能分析和利用提供了进一步的信息,为其品质性状分子机制研究及遗传改良奠定了基础。  相似文献   

19.
A rice CDPK gene, OsCDPK14 (AY144497), was cloned from developing caryopses of rice (Oryza sativa cv. Zhonghua 15). Its cDNA sequence (1922 bp) contains an ORF encoding a 514 amino acids protein (56.7kD, pl 5.18). OsCDPK14 shows the typical structural features of the CDPK family, including a conserved catalytic Ser/Thr kinase domain, an autoinhibitory domain and a CaM-like domain with four putative Ca2+-binding EF hands. Subcellular targeting indicated that OsCDPK14 was located in the cytoplasm, probably due to the absence of myristoylation and palmitoylation motifs. OsCDPK14 was expressed in Escherichia coli and purified from bacterial extracts. The recombinant protein was shown to be a functional protein kinase using Syntide-2, a synthetic peptide. Kinase activity was shown to be Ca2+-dependent, and this activation was strongly enhanced by Mn2+ and inhibited by W7 in vitro. These results provide significant insights into the regulation and biochemical properties of OsCDPK14, suggesting OsCDPK14 may be a signal factor of cytoplasm in rice plant.  相似文献   

20.
Thiamin-binding proteins (TBPs) occur in many types of plant seeds. The biochemical and structural properties such as subunit structure and affinity for thiamin of the proteins have been characterized. However, the change of TBP and thiamin during seed maturation and germination is little known. Sesame (Sesamum indicum L.) seeds have unique albumin TBPs, because the other TBPs from plant seeds are generally globulins. In this study, we studied the change of the TBP and thiamin levels in sesame seeds. The protein content and thiamin-binding activity of the seeds increased with seed development after flowering. Immunological analysis using an antibody against the TBP of sesame seeds showed that the protein was accumulated in seeds during maturation. The thiamin content of the seeds increased with seed development after flowering. On the other hand, the thiamin-binding activity decreased during seed germination when TBP was degraded. The thiamin content of the seeds decreased during the germination. However, the amount of thiamin phosphate in the seeds during germination was little changed. These results suggested that thiamin was accumulated and stored as a complex with TBP in sesame seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号