首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We tested the hypothesis that the physiological strategy for acclimating to low body temperature is similar among closely related fish. Largemouth bass (Micropterus salmoides), green sunfish (Lepomis cyanellus), bluegill sunfish (Lepomis macrochirus), black crappie (Pomonix nigromaculatus), and white crappie (Pomonix annularis), all members of the family Centrarchidae, were acclimated to 5 degrees and 25 degrees C. Morphometric variables (total mass, total length, organ masses) and enzyme activities (hexokinase; lactate dehydrogenase; and cytochrome oxidase in heart, liver, and muscle) were measured in 5 degrees C- and 25 degrees C-acclimated fish at 5 degrees and 25 degrees C assay temperatures. Each species displayed a distinct physiological response to cold acclimation that differed among tissues. These data suggest that the response to cold acclimation is highly variable within families. Our findings are consistent with other studies suggesting that acclimation responses are labile and may evolve independently even among closely related species.  相似文献   

3.
Watanabe Y  Sato K 《PloS one》2008,3(10):e3446
The largest (up to 2 tons) and a globally distributed teleost--the ocean sunfish Mola mola--is commonly regarded as a planktonic fish because of its unusual shape including absence of caudal fin. This common view was recently questioned because the horizontal movements of the ocean sunfish tracked by acoustic telemetry were independent of ocean currents. However, direct information regarding their locomotor performance under natural conditions is still lacking. By using multi-sensor tags, we show that sunfish indeed swam continuously with frequent vertical movements at speeds of 0.4-0.7 m s(-1), which is similar to the records of other large fishes such as salmons, marlins, and pelagic sharks. The acceleration data revealed that they stroked their dorsal and anal fins synchronously (dominant frequency, 0.3-0.6 Hz) to generate a lift-based thrust, as penguins do using two symmetrical flippers. Morphological studies of sunfish (mass, 2-959 kg) showed that the dorsal and anal fins had similar external (symmetrical shape and identical area) and internal (identical locomotory muscle mass) features; however, the muscle shape differed markedly. We conclude that ocean sunfish have functional dorsoventral symmetry with regards to the non-homologous dorsal and anal fins that act as a pair of vertical hydrofoils. Although sunfish lack a swimbladder, we found that they are neutrally buoyant independent of depth because of their subcutaneous gelatinous tissue that has low density and is incompressible. Efficient lift-based swimming in conjunction with neutral buoyancy enables sunfish to travel long distances both horizontally and vertically.  相似文献   

4.
Locomotory characteristics of Treponema denticola   总被引:1,自引:0,他引:1  
Locomotion of pathogenic spirochetes has been suggested as a virulence factor in their pathogenesis. Little is known of the locomotory characteristics of oral anaerobic spirochetes. We have determined the optimal conditions for motility of seven strains of Treponema denticola in menstrua of different viscosities. The viscosity for optimum motility for all strains was found to be 9.57 centipoises at 25 degrees C. Under these conditions the average speeds for each strain was computed from the motility tracks as recorded by timed exposures under dark-field microscopy. Differences in speeds were found between the various strains. In addition, we have determined the "persistence" (direct distance/actual pathlength travelled) of cell movement of each strain. Interstrain differences were also noted. These locomotory characteristics contribute to the locomotory phenotypes of the various strains and therefore may aid in their characterization and provide an insight into locomotion as a virulence factor in periodontitis.  相似文献   

5.
The physiological effects on isotropically heated populations of Oxytricha bifaria cultured at 24 degrees C were investigated. At 34.6 degrees C ciliates became inert, and did not adaptively react to either cold or warm microgradients; they neither moved towards the favorable cold thermal source nor escaped from the unfavorable warm one. The inert oxytrichas were only able to perform the Side-Stepping Reaction (SSR) on the same spot. However, mobile ciliates at 31.6 degrees C reacted to the cold microgradient by immediately orienting themselves towards its source, without accelerating but reducing their SSR frequency. Moreover, in a warm microgradient such ciliates immediately increased their SSR frequency, then moved away from the thermal source. At 34.6 degrees C the behavior of ciliates was not-adaptive--not acting to guide the organisms to more favorable conditions--whereas at 31.6 degrees C it was still clearly adaptive. Therefore, the locomotory inertness of the oxytrichas at 34.6 degrees C was the result of thermal stress rather than their behavioral response to the environmental isotropy, in contrast to populations of the same species made inert at 9 degrees C.  相似文献   

6.
Rhythms of egg laying and locomotory activity in C. morosus show a 12 hr phase shift from L : D 12 : 12 to free-running conditions. Both egg laying and locomotory activity are entrained by a red light : dark 12 : 12 light régime. Egg laying is entrained by L : D 12 : 12 in insects with eyes excised suggesting the presence of an extraocular light receptor.  相似文献   

7.
Climate influences the distribution of organisms because of the thermal sensitivity of biochemical processes. Animals may compensate for the effects of variable temperatures, and plastic responses may facilitate radiation into different climates. The tropical fish Oreochromis mossambicus has radiated into climates that were thought to be thermally unsuitable. Here, we test the hypothesis that thermal acclimation will extend the locomotory and metabolic performance range of O. mossambicus. Juvenile fish were acclimated to 14 degrees, 17 degrees, and 22 degrees C. We measured responses to acclimation at three levels of organization: whole-animal performance (sustained swimming and resting and recovery rates of oxygen consumption), mitochondrial oxygen consumption in caudal muscle, and metabolic enzyme activities in muscle and liver at 12 degrees, 14 degrees, 17 degrees, 22 degrees, and 26 degrees C. Thermal optima of sustained swimming performance (U(crit)) changed significantly with acclimation, but acclimation had no effect on either resting or recovery oxygen consumption. Fish compensated for cold temperatures by upregulating state 3 mitochondrial oxygen consumption and increasing activity of lactate dehydrogenase in the liver. The capacity for phenotypic plasticity in O. mossambicus means that the fish would not be limited by its locomotor performance or metabolic physiology to expand its range into cooler thermal environments from its current distribution.  相似文献   

8.
We examined spontaneous locomotory behavior and respiratory pattern in replicate outbred populations of Drosophila melanogaster selected for desiccation resistance or starvation resistance, as well as their control and ancestral populations. Use of these populations allows us to compare evolved behavioral changes in response to different stress selections. We also reasoned that previously observed changes in respiratory patterns following selection for increased desiccation resistance might be associated with or even caused by changes in locomotory behavior. We measured spontaneous locomotory behavior using video recordings and a computer-based tracking system while simultaneously measuring patterns of CO(2) release from single fruit flies. Statistically significant differences in behavior were observed to be correlated with selection regime. Reduced levels of spontaneous locomotory activity were observed in moist air in both desiccation- and starvation-selected populations compared with their controls. Interestingly, in dry air, only the desiccation-selected flies continue to show reduced spontaneous locomotory activity. No correlation was found between the level of locomotory activity of individual flies and the respiratory patterns of those flies, indicating that the reduced activity levels that have evolved in these flies did not directly cause the documented changes in their respiratory pattern.  相似文献   

9.
The liver mitochondrial and microsomal membranes of green sunfish and rat were examined by steady state polarisation and differential polarised phase fluorimetry to determine the effects of seasonal adaptation of membrane dynamic structure to temperature. Steady state polarisation studies indicated that the liver mitochondria of green sunfish acclimated to different temperatures showed a greater partial compensation of membrane fluidity for the altered acclimation temperature than did liver microsomal membranes. The fatty acid composition of both membrane preparations generally became more unsaturated at lower acclimation temperatures, though the differences between 5°C and 25°C acclimated fish were more pronounced in the mitochondrial fraction than in the microsomal fraction.Differential polarised phase fluorimetric studies indicated that the rotations of diphenylhexatriene in mitochondrial and microsomal membranes were highly hindered, though the hindrance offered by membranes of 25°C acclimated green sunfish was far greater than that offered by the membranes of 5°C acclimated fish, thus supporting the concept of homeoviscous adaptation. The absolute rotational rate was not consistently affected by acclimation treatment.  相似文献   

10.
Myofibrillar ATPase activity was measured in the epaxial musculature of five freshwater species of fish acclimated to extremes of temperature within their tolerance ranges. Changes in the enzyme activity were apparent in carp, tench and roach, cold acclimated fish (10°C) having higher enzyme activity levels than hot acclimated fish (28°C). Such changes were not apparent in eels or brook trout. Alteration of the enzyme activity took less than 4 weeks, and was totally reversible. This suggests that seasonal adaptation to environmental temperatures is possible, thus maintaining locomotory efficiency.  相似文献   

11.
12.
The extent of naturally occurring variations of enzyme locus expression was determined for three tissues (liver, muscle, and eye) in two species of sunfish (Centrarchidae), the green sunfish (Lepomis cyanellus) and the redear sunfish (L. microlophus). The genetic basis for species differences in tissue enzyme specific activities of malate dehydrogenase (EC 1.1.1.37), lactate dehydrogenase (EC 1.1.1.27), phosphoglucomutase (EC 2.7.5.1), and glucosephosphate isomerase (EC 5.3.1.9) was investigated by determining enzyme specific activities in the tissues of the reciprocal F1 hybrids and of their backcross progenies. The specific activities for most enzymes in hybrids were intermediate between those of the parental species. Significant differences in enzyme specific activity were detected among the F1 progeny as well as those of backcrosses. Variations in specific activity levels in one tissue were often independent of variations in specific activities in a different tissue. However, the changes in the specific activities of different enzymes within the same tissue were often positively correlated. The tissue glucosephosphate isomerase activity differences appear not to be due to different functional contributions of the glucosephosphate isomerase allelic isozymes. Cluster analysis of distributions of specific activities revealed no simple Mendelian pattern of inheritance for control of tissue enzyme activity. Our results suggest a polygenic control of tissue enzyme specific activity levels.  相似文献   

13.
Synopsis We investigated the ability of two congeneric species of sunfish to learn to forage on a novel prey item in feeding arenas containing structured habitats. Eight bluegill sunfish and eight pumpkinseed sunfish were given the opportunity to forage on whiteworms daily for 10 days. Each day, several behavioural measures were recorded for each fish. Both species of sunfish learned to feed over the 10-day period but the bluegill sunfish learned to feed more quickly than the pumpkinseed sunfish. Pumpkinseeds, however, attained a higher level of foraging efficiency. The differences in learning and foraging efficiency were related to body morphology.  相似文献   

14.
Abstract. Feeding cycles and daily locomotory patterns of the German cockroach, Blattella germanica L. (Dictyoptera: Blattellidae), were correlated with the ovarian development cycle. To meet the nutrient requirement for ovarian development, females increased feeding before forming oothecae. Locomotory activity also increased when females became sexually receptive. All these activities reached a peak just before the formation of oothecae. Ovarian development ceased and locomotion and food consumption decreased during pregnancy. Both mated and virgin females showed similar reproductive cycles, but those of mated females were more precisely timed (intervals between successive oothecae, and pregnancy duration, were 5 ± 0.6 and 17 ± 0.6 days, respectively). However, the intervals between successive oothecae of virgin females were longer and less synchronized. During this longer interval, feeding took place immediately following the discharge of the ootheca, but locomotory activity increased 5 days later when females became sexually receptive. Mated females increased locomotory activities 1 or 2 days before the end of pregnancy, presumably searching for deposition sites for oothecae. Female adults were found to exhibit a daily nocturnal locomotory pattern. However, under the physiological demands of reproduction, the pattern could be changed, for example by increasing activity during photophase when females were sexually receptive. The physiological effects of reproduction override the control of the daily locomotory pattern by its diel clock.  相似文献   

15.
The strongest form of intralocus sexual conflict occurs when two conditions are met: (i) there is a positive intersexual genetic correlation for a trait and (ii) the selection gradients on the trait in the two sexes are in opposite directions. Intralocus sexual conflict can constrain the adaptive evolution of both sexes and thereby contribute to a species' 'gender load'. Previous studies of adult lifetime fitness of the same sets of genes expressed in both males and females have established that there is substantial intralocus conflict in the LHM laboratory-adapted population of Drosophila melanogaster. Here, we investigated whether a highly dimorphic trait-adult locomotory activity-contributed substantially to the established intralocus sexual conflict. To measure the selection gradient on activity level, both this trait and adult lifetime fitness were measured under the same environmental conditions to which the flies were adapted. We found significant phenotypic variation in both sexes for adult locomotory activity, and that the selection gradients on this variation were large and in opposite directions in the two sexes. Using hemiclonal analysis to screen 99% of the entire genome, we found abundant genetic variation for adult locomotory activity and showed that this variation occurs on both the X and autosomes. We also established that there is a strong positive intersexual genetic correlation for locomotory activity. These assays revealed that, despite the strong, extant sexual dimorphism for the trait, locomotory activity continues to contribute strongly to intralocus sexual conflict in this population.  相似文献   

16.
Two freshwater populations and one marine population (Baltic Sea) of threespine stickeback (Gasterosteus aculeatus) from Northeastern Germany were studied with regard to locomotory capacity: sustained swimming performance, activities of key enzymes in axial muscle, pectoral fin muscle and heart, and morphology. We postulated that life history differences between migratory Baltic Sea and resident freshwater populations could have led to a divergence in their locomotory capacity. The activity of citrate synthase (CS) in pectoral muscle correlated with critical swimming speed. Critical swimming speed, aerobic and anaerobic capacity of the pectoral fin muscle were population-specific. The Baltic Sea sticklebacks had a higher locomotory capacity (activity of CS in pectoral muscle, critical swimming speed) than sticklebacks of one freshwater population. However, another freshwater population expressed a similar locomotory capacity as the Baltic Sea population. In addition, Baltic Sea sticklebacks had a greater mass and lower anaerobic capacity of the pectoral fin muscle than the freshwater sticklebacks. The results are interpreted as an indication of a proceeding divergence between marine and resident freshwater populations and between freshwater populations of G. aculeatus originating from marine ancestors. The migratory Baltic Sea sticklebacks had better morphological prerequisites for sustained swimming than both freshwater populations, but there was no general difference in the locomotory capacity between marine and freshwater sticklebacks. However, their morphology could favour a more effective locomotion in the Baltic Sea sticklebacks.  相似文献   

17.
The concentration of cytochrome c in the skeletal muscle of the green sunfish (Lepomis cyanellus) increases with decreasing temperature of acclimation: 1.51 +/- 0.09, 1.17 +/- 0.03, and 0.98 +/- 0.07 nanomoles per gram wet weight from muscle of animals acclimated to 5 degrees, 15 degrees, and 25 degrees C, respectively. The roles of synthesis and degradation of cytochrome c during thermal acclimation were investigated by measurement of loss of specific radioactivity from cytochrome c and from total mitochondrial heme protein, and by analysis of the rate of change in concentration of cytochrome c. The radioisotope used was 14C-delta-aminolevulinic acid, a non-reutilizable heme precursor. At 25 degrees C, the half-life of cytochrome c was 7.1 days based on radioactivity measurements and 5.6 days based on change in concentration. Statistical analysis showed no significant difference in half-lives obtained by the two methods. The half-life of total mitochondrial heme protein was determined to be 5.7 days on the basis of radioactivity data, under the same conditions. No significant difference was found between the rate of turnover of the heme protein pool from mitochondria and either measurement for cytochrome c at 25 degrees C. At an acclimation temperature of 5 degrees C, the half-life of cytochrome c from skeletal muscle was 13.7 days based upon changes in concentration. At low acclimation temperature, radioactive label was retained in acid-soluble form by fish for many days, precluding measurement of half-life by this technique. Transfer of fish from 25 degrees to 5 degrees C resulted in a rapid decrease of approximately 40% in rates in synthesis of skeletal muscle cytochrome c, and a concomitant decrease in the degradation rate constant for this molecule of approximately 60%. The disproportionality in temperature-sensitivities of these two processes leads to an approximately 50% net increase in the concentration of cytochrome c during acclimation. In transfer from 5 degrees to 25 degrees C, the converse, rapid readjustments in synthetic and degradative parameters occur, resulting in the observed decrease in cytochrome c content.  相似文献   

18.
Dynamics of manganese,cadmium, and lead in experimental power plant ponds   总被引:2,自引:2,他引:0  
The purpose of this study was to determine the effect of heated power plant water on the uptake and retention of manganese, cadmium and lead in selected aquatic invertebrates, channel catfish, green sunfish, and aquatic macrophytes and to study the distribution of manganese, cadmium and lead in sediments and water of experimental power plant ponds.The study was accomplished by placing fingerling channel catfish and green sunfish in holding pens in two ponds, one an experimental pond and one a control pond. Whole fish and selected organs of channel catfish and green sunfish were analyzed during the study. The experimental pond received heated power plant water and was maintained 4–6° C above ambient temperature during the study. Sediments, water, Odonata nymphs, tubificid annelids, snails, leeches, fingernail clams and duckweed were also analyzed for the metals.A typical distribution profile for manganese, cadmium and lead in power plant cooling ponds was developed.  相似文献   

19.
The effect of body temperature on the locomotory energetics of lizards   总被引:1,自引:0,他引:1  
Oxygen consumption (VO2), carbon dioxide production (VCO2), and stamina were measured in the lizard Tupinambis nigropunctatus running at sustainable and non-sustainable velocities (v) on a motor-driven treadmill. Three experimental groups were measured: field-fresh animals at body temperature (Tb) = 35 degrees C and laboratory-maintained animals at Tb = 35 and 25 degrees C. Mean preferred Tb was determined to be 35.2 degrees C. At 35 degrees C, field-fresh animals had a greater maximal oxygen consumption (VO2max corr) (4.22 vs 3.60 ml O2 g-0.76h-1) and a greater endurance. The net cost of transport (slope of VO2 on v) did not differ between the groups (= 2.60 ml O2 g-0.76)km-1). Velocity at which VO2max is attained (MAS) is 0.84 km h-1. The respiratory exchange ratio (R) exceeded 1.0 at v above MAS, indicating supplementary anaerobic metabolism. At 25 degrees C, VO2max corr was lower (2.34 ml O2 g-0.76h-1) as was endurance, MAS occurring at 0.5 km h-1. Net cost of transport was not significantly different than at 35 degrees C. The effect of Tb on locomotory costs was analyzed for this lizard and other species. It was concluded that the net cost of transport is temperature independent in all species examined and the total cost of locomotion (VO2 v-1) is temperature dependent in Tupinambis (Q10 = 1.4-2.0) and all other species examined except one. The energetic cost of locomotion [(VO2active-VO2rest)v-1], previously reported to be temperature independent in lizards, is temperature dependent in Tupinambis (Q10 = 1.3-1.6) and in two other species.2r  相似文献   

20.
The effects of thermal stratification and light gradients on the feeding behavior of pumpkinseeds, Lepomis gibbosus, were tested in vertical aquarium columns. Successful captures, unsuccessful captures and unsuccessful searches by foraging sunfish on Daphnia pulex were recorded. Clearance and feeding rates of the sunfish were lowest when prey densities remained high, indicating that the Daphnia were occupying an area that could not be searched by the sunfish. Thermal stratification limited the searching volume and prey availability of the sunfish, while creating a refuge for the Daphnia. Light intensities ≤ 4.2 × 10-3 W m-2 decreased the searching and capture abilities of the sunfish under isothermal conditions. Thermal stratification had more of an effect than the light gradients, creating a refuge for the Daphnia causing them to be unavailable and less vulnerable to predation by the sunfish. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号