首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have cloned and characterized a gene cluster for anthracycline biosynthesis from Streptomyces galilaeus. This cluster, 15-kb long, includes eight genes involved in the deoxyhexose biosynthesis pathway, a gene for a glycosyltransferase and one for an activator, as well as two genes involved in aglycone biosynthesis. Gene disruption targeted to the activator gene blocked production of aclacinomycins in S. galilaeus. Plasmid pSgs4, containing genes for a glycosyltransferase (aknS), an aminomethylase (aknX), a glucose-1-phosphate thymidylyltransferase (akn Y) and two genes for unidentified glycosylation functions (aknT and aknV), restored the production of aclacinomycins in the S. galilaeus mutants H063, which accumulates aklavinone, and H054, which produces aklavinone with rhodinose and deoxyfucose residues. Furthermore, pSgs4 directed the production of L-rhamnosyl-epsilon-rhodomycinone and L-daunosaminyl-epsilon-rhodomycinone in S. peucetius strains that produce epsilon-rhodomycinone endogenously. Subcloning of the gene cluster was carried out in order to further define the genes that are responsible for complementation and hybrid anthracycline generation.  相似文献   

2.
The dnrQS genes from the daunorubicin producer Streptomyces peucetius were characterized by DNA sequencing, complementation analysis, and gene disruption. The dnrQ gene is required for daunosamine biosynthesis, and dnrS appears to encode a glycosyltransferase for the addition of the 2,3,6-trideoxy-3-aminohexose, daunosamine, to epsilon-rhodomycinone.  相似文献   

3.
A 40-kb region of DNA from Sorangium cellulosum So ce26, which contains polyketide synthase (PKS) genes for synthesis of the antifungal macrolide antibiotic soraphen A, was cloned. These genes were detected by homology to Streptomyces violaceoruber genes encoding components of granaticin PKS, thus extending this powerful technique for the identification of bacterial PKS genes, which has so far been applied only to actinomycetes, to the gram-negative myxobacteria. Functional analysis by gene disruption has indicated that about 32 kb of contiguous DNA of the cloned region contains genes involved in soraphen A biosynthesis. The nucleotide sequence of a 6.4-kb DNA fragment, derived from the region with homology to granaticin PKS genes, was determined. Analysis of this sequence has revealed the presence of a single large open reading frame beginning and ending outside the 6.4-kb fragment. The deduced amino acid sequence indicates the presence of a domain with a high level of similarity to beta-ketoacyl synthases that are involved in polyketide synthesis. Other domains with high levels of similarity to regions of known polyketide biosynthetic functions were identified, including those for acyl transferase, acyl carrier protein, ketoreductase, and dehydratase. We present data which indicate that soraphen A biosynthesis is catalyzed by large, multifunctional enzymes analogous to other bacterial PKSs of type I.  相似文献   

4.
Sequence analysis of a 3.4-kb region Streptomyces peucetius daunorubicin (DNR) gene cluster established the presence of the dnrH and dnmT genes. In dnrH mutants, DNR production increased 8.5-fold, compared with that in the wild-type strain, while dnmT mutants accumulated epsilon-rhodomycinone (RHO), which normally becomes glycosylated in daunorubicin biosynthesis. Hence, dnmT may be involved in the biosynthesis or attachment of daunosamine to RHO or in the regulation of this process. Since the DnrH protein is similar to known glycosyl transferases, this protein may catalyze the conversion of DNR to its polyglycosylated forms, known as baumycins. Overexpression of dnmT in the wild-type and dnrH mutant strains resulted in a major decrease in RHO accumulation and increase in DNR production.  相似文献   

5.
M L Dickens  J Ye    W R Strohl 《Journal of bacteriology》1996,178(11):3384-3388
DNA sequence analysis of a region of the Streptomyces sp. strain C5 daunomycin biosynthesis gene cluster, located just upstream of the daunomycin polyketide biosynthesis genes, revealed the presence of six complete genes. The two genes reading right to left include genes encoding the potentially translationally coupled gene products, an acyl carrier protein and a ketoreductase, and the four genes reading divergently, left to right, include two open reading frames of unknown function followed by a gene encoding an apparent glycosyltransferase and dauE, encoding aklaviketone reductase. Extracts of Streptomyces lividans TK24 containing recombinant DauE catalyzed the NADPH-specific conversion of aklaviketone, maggiemycin, and 7-oxodaunomycinone to aklavinone, epsilon-rhodomycinone, and daunomycinone, respectively. Neither the product of dauB nor that of the ketoreductase gene directly downstream of the acyl carrier protein gene demonstrated aklaviketone reductase activity.  相似文献   

6.
7.
Du Y  Li T  Wang YG  Xia H 《Current microbiology》2004,49(2):99-107
Streptomyces tenebrarius H6 produces a variety of aminoglycoside antibiotics, such as apramycin, tobramycin, and kanamycin B. Primers were designed according to the highly conserved sequences of the dTDP-glucose-4,6-dehydratase genes, and a 0.6-kb PCR product was obtained from S. tenebrarius H6 genomic DNA. With the 0.6-kb PCR product as a probe, a BamHI 7.0-kb fragment was isolated. DNA sequence analysis of the 7.0-kb fragment revealed four ORFs and an incomplete ORF. In search of databases, the deduced product of one ORF (orfE) showed 62% identity to the dTDP-glucose-4,6-dehydratase, StrE of S. griseus. Three other ORFs (orfG1, orfG2, and orfGM) showed 55%, 62%, and 42% similarities, respectively, to glycosyltransferase from Clostridium acetobutylicum and mannosyltransferase from Xanthomonas axonopodis pv. citri str. 306 and glycosyltransferase from Pseudomonas putida KT2440. Upstream of the orfE was an incomplete ORF, and the deduced product showed 56% similarity to dTDP-4-dehydrorhamnose, StrL from S. griseus. The function of the orfE gene was studied by targeted gene disruption. The resulting mutant failed to produce tobramycin and kanamycin B, but still produced apramycin, suggesting that the orfE gene and linked gene cluster are essential for the biosynthesis of tobramycin and kanamycin B in S. tenebrarius H6.  相似文献   

8.
We report the identification and characterization of the ste (Streptomyces eps) gene cluster of Streptomyces sp. 139 required for exopolysaccharide (EPS) biosynthesis. This report is the first genetic work on polysaccharide production in Streptomyces. To investigate the gene cluster involved in exopolysaccharide 139A biosynthesis, degenerate primers were designed to polymerase chain reaction amplify an internal fragment of the priming glycosyltransferase gene that catalyzes the first step in exopolysaccharide biosynthesis. Screening of a genomic library of Streptomyces sp. 139 with this polymerase chain reaction product as probe allowed the isolation of a ste gene cluster containing 22 open reading frames similar to polysaccharide biosynthesis genes of other bacterial species. Involvement of the ste gene cluster in exopolysaccharide biosynthesis was confirmed by disrupting the priming glycosyltransferase gene in Streptomyces sp. 139 to generate non-exopolysaccharide-producing mutants.  相似文献   

9.
Gloeobacter violaceus is a cyanobacterium isolated from other groups by lack of thylakoids and unique structural features of its photosynthetic protein complexes. Carotenoid biosynthesis has been investigated with respect to the carotenoids formed and the genes and enzymes involved. Carotenoid analysis identified ss-carotene as major carotenoid and echinenone as a minor component. This composition is quite unique and the cellular amounts are up to 10-fold lower than in other unicellular cyanobacteria. Carotenoid biosynthesis is up-regulated in a light-dependent manner. This enhanced biosynthesis partially compensates for photooxidation especially of ss-carotene. The sequenced genome of G. violaceus was analyzed and several gene candidates homologous to carotenogenic genes from other organisms obtained. Functional expression of all candidates and complementation in Escherichia coli led to the identification of all genes involved in the biosynthesis of the G. violaceus carotenoids with the exception of the lycopene cyclase gene. An additional diketolase gene was found that functioned in E. coli but is silent in G. violaceus cells. The biggest difference from all other cyanobacteria is the existence of a single bacterial-type 4-step desaturase instead of the poly cis cyanobacterial desaturation pathway catalyzed by two cyanobacterial-type desaturases and an isomerase. The genes for these three enzymes are absent in G. violaceus.  相似文献   

10.
Two DNA segments, dnrR1 and dnrR2, from the Streptomyces peucetius ATCC 29050 genome were identified by their ability to stimulate secondary metabolite production and resistance. When introduced into the wild-type ATCC 29050 strain, the 2.0-kb dnrR1 segment caused a 10-fold overproduction of epsilon-rhodomycinone, a key intermediate of daunorubicin biosynthesis, whereas the 1.9-kb dnrR2 segment increased production of both epsilon-rhodomycinone and daunorubicin 10- and 2-fold, respectively. In addition, the dnrR2 segment restored high-level daunorubicin resistance to strain H6101, a daunorubicin-sensitive mutant of S. peucetius subsp. caesius ATCC 27952. Analysis of the sequence of the dnrR1 fragment revealed the presence of two closely situated open reading frames, dnrI and dnrJ, whose deduced products exhibit high similarity to the products of several other Streptomyces genes that have been implicated in the regulation of secondary metabolism. Insertional inactivation of dnrI in the ATCC 29050 strain with the Tn5 kanamycin resistance gene abolished epsilon-rhodomycinone and daunorubicin production and markedly decreased resistance to daunorubicin. Sequence comparison between the products of dnrIJ and the products of the Streptomyces coelicolor actII-orf4, afsR, and redD-orf1 genes and of the Streptomyces griseus strS, the Saccharopolyspora erythraea eryC1, and the Bacillus stearothermophilus degT genes reveals two families of putative regulatory genes. The members of the DegT, DnrJ, EryC1, and StrS family exhibit some of the features characteristic of the protein kinase (sensor) component of two-component regulatory systems from other bacteria (even though none of the sequences of these four proteins show a significant overall or regional similarity to such protein kinases) and have a consensus helix-turn-helix motif typical of DNA binding proteins. A helix-turn-helix motif is also present in two of the proteins of the other family, AfsR and RedD-Orf1. Both sets of Streptomyces proteins are likely to be trans-acting factors involved in regulating secondary metabolism.  相似文献   

11.
Singh D  Seo MJ  Kwon HJ  Rajkarnikar A  Kim KR  Kim SO  Suh JW 《Gene》2006,376(1):13-23
The validamycin biosynthetic gene cluster was isolated from Streptomyces hygroscopicus var. limoneus KTCC 1715 (IFO 12704) using a pair of degenerated PCR primers designed from the sequence of AcbC, 2-epi-5-epi-valiolone synthase in the acarbose biosynthesis. The nucleotide sequence analysis of the 37-kb DNA region revealed 22 complete ORFs including vldA, the acbC ortholog. Located around vldA, vldB to K were predicted to encode adenyltransferase, kinase, ketoreductase (or epimerase/dehydratase), glycosyltransferase, aminotransferase, dehydrogenase, phosphatase/phosphomutase, glycosyl hydrolase, transport protein, and glycosyltransferase, respectively. Apparently absent were any regulatory components within the sequenced region. The disruption of vldA abolished the validamycin biosynthesis and the plasmid-based complementation with vldABC restored production to the vldA-mutant; this substantiated that vldABC are essential to validamycin biosynthesis. This finding enabled us to discover the complete validamycin biosynthetic cluster. The cosmid clone of pJWS3001 harboring the 37-kb DNA region conferred validamycin-accumulation to Streptomyces lividans, indicating that the entire gene cluster of validamycin biosynthesis had been isolated. Additionally, Streptomyces albus, transformed with pJWS3001, produced a high level of alpha-glucosidase inhibitory activity in a R2YE liquid culture, which highlights the portability of the cluster within Streptomyces. The product of vldI was characterized as a glucoamylase (kcat, 32 s(-1); K(m), 5 mg/ml of starch) that does not play any apparent role in the validamycin biosynthesis. In order to characterize the upstream region, a vldW knockout was achieved via gene-replacement. A phenotypic study of the resulting mutant revealed that vldW is not essential for the host's ability to control Pellicularia filamentosa growth. The current information suggests that vldA to vldH is the genetic region essential to validamycin biosynthesis. This promises excellent opportunities to elucidate biosynthetic route(s) to the validamycin complex and to engineer the pathway for industrial application.  相似文献   

12.
13.
Oxazolomycin (OZM), a hybrid peptide-polyketide antibiotic, exhibits potent antitumor and antiviral activities. Using degenerate primers to clone genes encoding methoxymalonyl-acyl carrier protein (ACP) biosynthesis as probes, a 135-kb DNA region from Streptomyces albus JA3453 was cloned and found to cover the entire OZM biosynthetic gene cluster. The involvement of the cloned genes in OZM biosynthesis was confirmed by deletion of a 12-kb DNA fragment containing six genes for methoxymalonyl-ACP biosynthesis from the specific region of the chromosome, as well as deletion of the ozmC gene within this region, to generate OZM-nonproducing mutants.  相似文献   

14.
G Bierbaum  M Reis  C Szekat    H G Sahl 《Applied microbiology》1994,60(12):4332-4338
Pep5 is a lanthionine-containing antimicrobial peptide which is produced by Staphylococcus epidermidis 5. Its structural gene, pepA, is located on the 20-kb plasmid pED503. A 6.2-kb fragment of pED503 containing pepA, the immunity gene pepI, and 5.4 kb of downstream sequence was able to direct biosynthesis of biologically active Pep5 in a nonproducing variant of the producer strain which is devoid of pED503. In addition to producing wild-type Pep5 with a molecular mass of 3,488 Da, the clone produced a peptide with an eightfold-lower bactericidal activity and a mass of 3,506 Da, indicative of incomplete dehydration of one hydroxyamino acid. For construction of the expression system, this 6.2-kb fragment was cut into a 1.39-kb fragment containing pepA and pepI and a 4.8-kb fragment covering the remaining downstream region. This 4.8-kb fragment was directly cloned into an Escherichia coli-Staphylococcus shuttle vector, yielding a new plasmid (pGB9) into which mutated pepA genes generated on the 1.39-kb fragment can be reinserted to yield a functional Pep5 biosynthesis gene cluster. To test the expression system, two mutants were constructed. Lys-18-Pro Pep5 was produced in its dehydrated form and a partially hydrated form in amounts comparable to those of the wild-type peptide. In contrast, only small amounts of Phe-23-Asp Pep5 were excreted, indicating that some residues in the propeptide part of the prelantibiotic may be crucial for certain steps in the biosynthetic pathway of lantibiotics.  相似文献   

15.
Chen W  Zeng H  Tan H 《Current microbiology》2000,41(5):312-316
A 111-bp DNA fragment related to nikkomycin biosynthesis of Streptomyces ansochromogenes 7100 was obtained with the method of reverse genetics. Then, a 2.2-kb DNA fragment was cloned from the DNA library of S. ansochromogenes 7100 by using the 111-bp fragment as a probe. Sequence analysis showed that the fragment contains one complete open reading frame (ORF) that encodes a 219-amino acid (aa) protein, and this gene was designated sanF (GenBank Accession No. AF223971). The function of the sanF gene was studied by a strategy of gene disruption, and the resulting sanF mutants lost the ability to synthesize biologically active nikkomycin, indicating that sanF is essential for nikkomycin biosynthesis. Received: 17 April 2000 / Accepted: 23 May 2000  相似文献   

16.
Phosphate strongly repressed the formation of p-aminobenzoic acid (PABA) synthase, an enzyme involved in candicidin biosynthesis. Expression in Streptomyces lividans of the pabS gene (encoding PABA synthase) of Streptomyces griseus is repressed by phosphate at concentrations above 0.1 mM. However, expression of the pabS gene in Escherichia coli is not regulated by phosphate. Phosphate control of the expression of the pabS gene was observed in all plasmids containing the original 4.5-kb BamHI fragment, whereas no phosphate regulation was found when an upstream 1-kb fragment that carries the pabS promoter was deleted. Using the promoter-probe plasmid pIJ424, a '114-bp' promoter was cloned. Expression of the promoterless kanamycin phosphotransferase gene when fused to the '114-bp' promoter was strongly reduced by phosphate (90% at 5 mM concentration). The '114-bp' promoter has been sequenced and the first transcribed nucleotide identified by S1 mapping. The '114-bp' fragment is A + T-rich (54%), as compared to the Streptomyces genome (70-73% GC). The presence of a phosphate control sequence (pcs) in the upstream region of the pabS gene is proposed.  相似文献   

17.
18.
The ERG3 gene from Saccharomyces cerevisiae has been cloned by complementation of an erg3-2 mutation. ERG3 is the putative gene encoding the C-5 sterol desaturase required for ergosterol biosynthesis. The functional gene has been localized on a 2.5-kb HindIII-BamHI fragment containing an open reading frame comprising 365 amino acids. Gene disruption resulting from a deletion/substitution demonstrates that ERG3 is not essential for cell viability or the sparking function.  相似文献   

19.
20.
Pyrrolnitrin is a secondary metabolite of Pseudomonas and Burkholderia sp. strains with strong antifungal activity. Production of pyrrolnitrin has been correlated with the ability of some bacteria to control plant diseases caused by fungal pathogens, including the damping-off pathogen Rhizoctonia solani. Pseudomonas fluorescens BL915 has been reported to produce pyrrolnitrin and to be an effective biocontrol agent for this pathogen. We have isolated a 32-kb genomic DNA fragment from this strain that contains genes involved in the biosynthesis of pyrrolnitrin. Marker-exchange mutagenesis of this DNA with Tn5 revealed the presence of a 6.2-kb region that contains genes required for the synthesis of pyrrolnitrin. The nucleotide sequence of the 6.2-kb region was determined and found to contain a cluster of four genes that are required for the production of pyrrolnitrin. Deletion mutations in any of the four genes resulted in a pyrrolnitrin-nonproducing phenotype. The putative coding sequences of the four individual genes were cloned by PCR and fused to the tac promoter from Escherichia coli. In each case, the appropriate tac promoter-pyrrolnitrin gene fusion was shown to complement the pyrrolnitrin-negative phenotype of the corresponding deletion mutant. Transfer of the four gene cluster to E. coli resulted in the production of pyrrolnitrin by this organism, thereby demonstrating that the four genes are sufficient for the production of this metabolite and represent all of the genes required to encode the pathway for pyrrolnitrin biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号