首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic regulation of nitrogen fixation in rhizobia.   总被引:33,自引:5,他引:28       下载免费PDF全文
  相似文献   

2.
Many bacterial species contain multiple copies of the genes that encode the chaperone GroEL and its cochaperone, GroES, including all of the fully sequenced root-nodulating bacteria that interact symbiotically with legumes to generate fixed nitrogen. In particular, in Sinorhizobium meliloti there are four groESL operons and one groEL gene. To uncover functional redundancies of these genes during growth and symbiosis, we attempted to construct strains containing all combinations of groEL mutations. Although a double groEL1 groEL2 mutant cannot be constructed, we demonstrate that the quadruple groEL1 groESL3 groEL4 groESL5 and groEL2 groESL3 groEL4 groESL5 mutants are viable. Therefore, like E. coli and other species, S. meliloti requires only one groEL gene for viability, and either groEL1 or groEL2 will suffice. The groEL1 groESL5 double mutant is more severely affected for growth at both 30 degrees C and 40 degrees C than the single mutants, suggesting overlapping functions in stress response. During symbiosis the quadruple groEL2 groESL3 groEL4 groESL5 mutant acts like the wild type, but the quadruple groEL1 groESL3 groEL4 groESL5 mutant acts like the groEL1 single mutant, which cannot fully induce nod gene expression and forms ineffective nodules. Therefore, the only groEL gene required for symbiosis is groEL1. However, we show that the other groE genes are expressed in the nodule at lower levels, suggesting minor roles during symbiosis. Combining our data with other data, we conclude that groESL1 encodes the housekeeping GroEL/GroES chaperone and that groESL5 is specialized for stress response.  相似文献   

3.
Among the rhizobia that establish nitrogen-fixing nodules on the roots of host plants, many contain multiple copies of genes encoding the sigma factor RpoH and the chaperone GroEL/GroES. In Sinorhizobium meliloti there are two rpoH genes, four groESL operons, and one groEL gene. rpoH1 mutants are defective for growth at high temperature and form ineffective nodules, rpoH1 rpoH2 double mutants are unable to form nodules, and groESL1 mutants form ineffective nodules. To explore the roles of RpoH1 and RpoH2, we identified mutants that suppress both the growth and nodulation defects. These mutants do not suppress the nitrogen fixation defect. This implies that the functions of RpoH1 during growth and RpoH1/RpoH2 during the initiation of symbiosis are similar but that there is a different function of RpoH1 needed later during symbiosis. We showed that, unlike in Escherichia coli, overexpression of groESL is not sufficient to bypass any of the RpoH defects. Under free-living conditions, we determined that RpoH2 does not control expression of the groE genes, and RpoH1 only controls expression of groESL5. Finally, we completed the series of groE mutants by constructing groESL3 and groEL4 mutants and demonstrated that they do not display symbiotic defects. Therefore, the only groESL operon required by itself for symbiosis is groESL1. Taken together, these results suggest that GroEL/GroES production alone cannot explain the requirements for RpoH1 and RpoH2 in S. meliloti and that there must be other crucial targets.  相似文献   

4.
Nayidu NK  Wang L  Xie W  Zhang C  Fan C  Lian X  Zhang Q  Xiong L 《Gene》2008,412(1-2):59-70
PEX11 gene family has been shown to be involved in peroxisome biogenesis but very little is known about this gene family in rice. Here we show that five putative PEX11 genes (OsPEX11-1-5) present in rice genome and each contain three conserved motifs. The PEX11 sequences from rice and other species can be classified into three major groups. Among the five rice PEX11 genes, OsPEX11-2 and -3 are most likely duplicated. Expression profile and RT-PCR analysis suggested that the members of PEX11 family in rice had differential expression patterns: OsPEX11-1 and OsPEX11-4 had higher expression levels in leaf tissues than in the other tissues, OsPEX11-2 was detected only in germinated seeds, OsPEX11-3 was expressed predominantly in endosperm and germinated seeds, and OsPEX11-5 was expressed in all the tissues investigated. We also observed that the rice PEX11 genes had differential expression patterns under different abiotic stresses. OsPEX11-1 and OsPEX11-4 were induced by abscisic acid (ABA), hydrogen peroxide (H2O2), salt and low nitrogen stress conditions. OsPEX11-3 was responsive to ABA and H2O2 treatments, and OsPEX11-5 was responsive to ABA, H2O2, and salt treatments. However, OsPEX11-2 had no response to any of the stresses. Our results suggest that the rice PEX11 genes have diversification not only in sequences but also in expression patterns under normal and various stress conditions.  相似文献   

5.
6.
7.
8.
9.
By using cloned Rhizobium meliloti nodulation (nod) genes and nitrogen fixation (nif) genes, we found that the genes for both nodulation and nitrogen fixation were on a plasmid present in fast-growing Rhizobium japonicum strains. Two EcoRI restriction fragments from a plasmid of fast-growing R. japonicum hybridized with nif structural genes of R. meliloti, and three EcoRI restriction fragments hybridized with the nod clone of R. meliloti. Cross-hybridization between the hybridizing fragments revealed a reiteration of nod and nif DNA sequences in fast-growing R. japonicum. Both nif structural genes D and H were present on 4.2- and 4.9-kilobase EcoRI fragments, whereas nifK was present only on the 4.2-kilobase EcoR2 fragment. These results suggest that the nif gene organizations in fast-growing and in slow-growing R. japonicum strains are different.  相似文献   

10.
11.
Sequence analysis of the rpoN (2)- fixA intergenic region in the genome of Rhizobium etli CNPAF512 has uncovered three genes involved in nitrogen fixation, namely nifU, nifS and nifW. These genes are preceded by an ORF that is highly conserved among nitrogen-fixing bacteria. It encodes a putative gene product of 105 amino acids, belonging to the HesB-like protein family. A phylogenetic analysis of members of the HesB-like protein family showed that the R. etli HesB-like protein clusters with polypeptides encoded by ORFs situated upstream of the nifUS nitrogen fixation regions in the genomes of other diazotrophs. The R. etli ORF that encodes the HesB-like protein was designated iscN. iscN is co-transcribed with nifU and nifS, and is preferentially expressed under free-living microaerobic conditions and in bacteroids. Expression is regulated by the alternative sigma factor RpoN and the enchancer-binding protein NifA. A R. etli iscN mutant displays a reduction in nitrogen fixation capacity of 90% compared to the wild-type strain. This Nif(-) phenotype could be complemented by the introduction of intact copies of R. etli iscN.  相似文献   

12.
13.
Bradyrhizobium japonicum is a Gram-negative soil bacterium symbiotically associated with soya bean plants, which is also able to denitrify under free-living and symbiotic conditions. In B. japonicum, the napEDABC, nirK, norCBQD and nosRZDYFLX genes which encode reductases for nitrate, nitrite, nitric oxide and nitrous oxide respectively are required for denitrification. Similar to many other denitrifiers, expression of denitrification genes in B. japonicum requires both oxygen limitation and the presence of nitrate or a derived nitrogen oxide. In B. japonicum, a sophisticated regulatory network consisting of two linked regulatory cascades co-ordinates the expression of genes required for microaerobic respiration (the FixLJ/FixK2 cascade) and for nitrogen fixation (the RegSR/NifA cascade). The involvement of the FixLJ/FixK2 regulatory cascade in the microaerobic induction of the denitrification genes is well established. In addition, the FNR (fumarase and nitrate reduction regulator)/CRP(cAMP receptor protein)-type regulator NnrR expands the FixLJ/FixK2 regulatory cascade by an additional control level. A role for NifA is suggested in this process by recent experiments which have shown that it is required for full expression of denitrification genes in B. japonicum. The present review summarizes the current understanding of the regulatory network of denitrification in B. japonicum.  相似文献   

14.
15.
Strains of Bradyrhizobium spp. form nitrogen-fixing symbioses with many legumes, including soybean. Although inorganic sulfur is preferred by bacteria in laboratory conditions, sulfur in agricultural soil is mainly present as sulfonates and sulfur esters. Here, we show that Bradyrhizobium japonicum and B. elkanii strains were able to utilize sulfate, cysteine, sulfonates, and sulfur-ester compounds as sole sulfur sources for growth. Expression and functional analysis revealed that two sets of gene clusters (bll6449 to bll6455 or bll7007 to bll7011) are important for utilization of sulfonates sulfur source. The bll6451 or bll7010 genes are also expressed in the symbiotic nodules. However, B. japonicum mutants defective in either of the sulfonate utilization operons were not affected for symbiosis with soybean, indicating the functional redundancy or availability of other sulfur sources in planta. In accordance, B. japonicum bacteroids possessed significant sulfatase activity. These results indicate that strains of Bradyrhizobium spp. likely use organosulfur compounds for growth and survival in soils, as well as for legume nodulation and nitrogen fixation.  相似文献   

16.
17.
18.
19.
We have isolated a cDNA for a putative transporter, named GmNRT1-3, in the NRT1 family from soybean. It was predicted to have a similar topological structure not only to both GmNRT1-1 and GmNRT1-2 reported previously, but also to other members of the family. Two other cDNAs isolated have parts of the sequence for putative NRT1 transporters, GmNRT1-4 and GmNRT1-5, suggesting that at least five NRT1 transporters occur in soybean. These GmNRT1 genes and the GmNRT2 gene, encoding a soybean NRT2 nitrate transporter, showed different expression patterns to each other under various nitrogen conditions. Specifically, GmNRT1-3 was constitutively expressed in both roots and leaves, while GmNRT1-2 was gradually expressed as the roots developed in the presence of ammonium as a nitrogen source, but not in the presence of both ammonium and nitrate. Based on these results, we discussed the possible regulation in the expression and role of these transporters in nitrate uptake.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号