首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Nanoemulsification of nutrients could improve bioavailability by enhancing intestinal uptake. We investigated the antioxidant and hypolipidemic effects of nanoemulsified green tea extract (NGTE). Antioxidant effect was measured by 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging assay and dichlorofluorescein diacetate (DCFH-DA) assay. C57BL/6 mice were fed a control high-fat diet, green tea extract (GTE), or NGTE diet for 4 weeks. In composition analysis, GTE and NGTE contained similar total catechin concentrations. The antioxidative effect of GTE was comparable with that of NGTE. In the ABTS assay, GTE had a marked effect, although NGTE was more effective than GTE in the DCFH-DA assay. In the mouse feeding experiment, total and low-density lipoprotein (LDL) cholesterol concentrations were significantly reduced after NGTE treatment in comparison with GTE treatment in high-fat-fed C57BL/6J mice over the course of 4 weeks. The hypocholesterolemic effects were greater in the NGTE group compared with the GTE group (24% vs. 15.4% LDL cholesterol reduction compared with the control). Expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase was significantly down-regulated. Protein expression of LDL receptor was significantly increased in the livers of both the GTE- and NGTE-treated groups (+234.1%, P<.01 and +274.7%, P<.001), with a greater effect in the NGTE than in the GTE group. Cholesterol 7α-hydroxylase gene expression was similarly increased in both the GTE and NGTE groups. These results suggest that nanoemulsification significantly increased hypocholesterolemic effects of GTE in vivo due to increased bioavailability.  相似文献   

3.
Epidemiological and animal studies have indicated that consumption of green tea is associated with a reduced risk of developing certain forms of cancer. However, the inhibitory mechanism of green tea in angiogenesis, an important process in tumor growth, has not been well established. In the present study, green tea extract (GTE) was tested for its ability to inhibit cell viability, cell proliferation, cell cycle dynamics, vascular endothelial growth factor (VEGF) and expression of VEGF receptors fms-like tyrosine kinase (Flt-1) and fetal liver kinase-1/Kinase insert domain containing receptor (Flk-1/KDR) in vitro using human umbilical vein endothelial cells (HUVECs). GTE in culture media did not affect cell viability but significantly reduced cell proliferation dose-dependently and caused a dose-dependent accumulation of cells in the G1 phase. The decrease of the expression of Flt-1 and KDR/Flk-1 in HUVEC by GTE was detected with immunohistochemical and Western blotting methods. These results suggest that GTE may have preventive effects on tumor angiogenesis and metastasis through reduction of expression of VEGF receptors.  相似文献   

4.
These experiments were designed to determine whether green tea extract (GTE), which contains polyphenolic free radical scavengers, prevents ischemia-reperfusion injury to the liver. Rats were fed a powdered diet containing 0-0.3% GTE starting 5 days before hepatic warm ischemia and reperfusion. Free radicals in bile were trapped with the spin-trapping reagent alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN) and measured using electron spin resonance spectroscopy. Hepatic ischemia-reperfusion increased transaminase release and caused pathological changes including focal necrosis and hepatic leukocyte infiltration in the liver. Transaminase release was diminished by over 85% and pathological changes were almost totally blocked by 0.1% dietary GTE. Ischemia-reperfusion increased 4-POBN/radical adducts in bile nearly twofold, an effect largely blocked by GTE. Epicatechin, one of the major green tea polyphenols, gave similar protection as GTE. In addition, hepatic ischemia-reperfusion activated NF-kappa B and increased TNF-alpha mRNA and protein expression. These effects were all blocked by GTE. Taken together, these results demonstrate that GTE scavenges free radicals in the liver after ischemiareoxygenation, thus preventing formation of toxic cytokines. Therefore, GTE could prove to be effective in decreasing hepatic injury in disease states where ischemia-reperfusion occurs.  相似文献   

5.
Since urease of Helicobacter pylori is essential for its colonization, we focused attention on foodstuffs which inhibit the activity of this enzyme. Among plant-derived 77 foodstuff samples tested, some tea and rosemary extracts were found to clearly inhibit H. pylori urease in vitro. In particular, green tea extract (GTE) showed the strongest inhibition of H. pylori urease, with an IC(50) value of 13 microg/ml. Active principles were identified to be catechins, the hydroxyl group of 5(')-position appearing important for urease inhibition. Furthermore, when H. pylori-inoculated Mongolian gerbils were given GTE in drinking water at the concentrations of 500, 1000, and 2000 ppm for 6 weeks, gastritis and the prevalence of H. pylori-infected animals were suppressed in a dose-dependent manner. Since the acquisition by H. pylori of resistance to antibiotics has become a serious problem, tea and tea catechins may be very safe resources to control H. pylori-associated gastroduodenal diseases.  相似文献   

6.
Diabetes-induced hyperlipidemia, oxidative stress and protein glycation impair cellular calcium and sodium homeostasis associated with abnormal membrane-bound enzyme activities resulting in cardiac dysfunction in diabetes. To explore the cardioprotective mechanism of green tea in diabetes, we measured the changes in the levels of calcium, sodium, potassium and the activities of Na+/K+ -ATPase and Ca2+ -ATPase in green tea treated diabetic rat hearts. The effect of green tea on triglycerides, lipid peroxidation and protein glycation in diabetic heart were also measured to elucidate the underlying mechanisms. Diabetes was induced by streptozotocin (STZ, 60 mg/kg i.p.). Six weeks after the induction of diabetes, some of the diabetic rats were treated orally with green tea extract (GTE) (300 mg/kg/day) for 4 weeks. GTE produced reduction in blood glucose and lowered the levels of lipid peroxides, triglycerides and extent of protein glycation in the heart of diabetic rats. GTE blunted the rise in cardiac [Ca2+] and [Na+] whereas increased the activities of Ca2+ -ATPase and Na+/K+ -ATPase in diabetic rats. In conclusion, the data provide support to the therapeutic effect of GTE and suggest that a possible mechanism of action may be associated with the attenuation of the rise in [Ca2+] and [Na+] by ameliorating Ca2+ -ATPase and Na+/K+ -ATPase activities.  相似文献   

7.
Zhang L  Pang E  Loo RR  Rao J  Go VL  Loo JA  Lu QY 《Proteomics》2011,11(24):4638-4647
Pancreatic cancer is a deadly disease characterized by poor prognosis and patient survival. Green tea polyphenols have been shown to exhibit multiple antitumor activities in various cancers, but studies on the pancreatic cancer are very limited. To identify the cellular targets of green tea action, we exposed a green tea extract (GTE) to human pancreatic ductal adenocarcinoma HPAF-II cells and performed two-dimensional gel electrophoresis of the cell lysates. We identified 32 proteins with significantly altered expression levels. These proteins are involved in drug resistance, gene regulation, motility, detoxification and metabolism of cancer cells. In particular, we found GTE inhibited molecular chaperones heat-shock protein 90 (Hsp90), its mitochondrial localized homologue Hsp75 (tumor necrosis factor receptor-associated protein 1, or Trap1) and heat-shock protein 27 (Hsp27) concomitantly. Western blot analysis confirmed the inhibition of Hsp90, Hsp75 and Hsp27 by GTE, but increased phosphorylation of Ser78 of Hsp27. Furthermore, we showed that GTE inhibited Akt activation and the levels of mutant p53 protein, and induced apoptosis and growth suppression of the cells. Our study has identified multiple new molecular targets of GTE and provided further evidence on the anticancer activity of green tea in pancreatic cancer.  相似文献   

8.
9.
A series of polyphenols known as catechins are abundant in green tea, which is consumed mainly in Asian countries. The effects of catechin-rich green tea extract (GTE) on running endurance and energy metabolism during exercise in BALB/c mice were investigated. Mice were divided into four groups: nonexercise control, exercise control (Ex-cont), exercise+0.2% GTE, and exercise+0.5% GTE groups. Treadmill running time to exhaustion, plasma biochemical parameters, skeletal muscle glycogen content, beta-oxidation activity, and malonyl-CoA content immediately after exercise were measured at 8-10 wk after the initiation of the experiment. Oxygen consumption and respiratory exchange ratio were measured using indirect calorimetry. Running times to exhaustion in mice fed 0.5% GTE were 30% higher than in Ex-cont mice and were accompanied by a lower respiratory exchange ratio, higher muscle beta-oxidation activity, and lower malonyl-CoA content. In addition, muscle glycogen content was high in the GTE group compared with the Ex-cont group. Plasma lactate concentrations in mice fed GTE were significantly lower after exercise, concomitant with an increase in free fatty acid concentrations. Catechins, which are the main constituents of GTE, did not show significant effects on peroxisome proliferator-activated receptor-alpha or delta-dependent luciferase activities. These results suggest that the endurance-improving effects of GTE were mediated, at least partly, by increased metabolic capacity and utilization of fatty acid as a source of energy in skeletal muscle during exercise.  相似文献   

10.
Oxidative and nitrative stress responses resulting from inflammation exacerbate liver injury associated with nonalcoholic steatohepatitis (NASH) by inducing lipid peroxidation and protein nitration. The objective of this study was to investigate whether the anti-inflammatory properties of green tea extract (GTE) would protect against NASH by suppressing oxidative and nitrative damage mediated by proinflammatory enzymes. Obese mice (ob/ob) and their 5-week-old C57BL6 lean littermates were fed 0%, 0.5% or 1% GTE for 6 weeks (n=12-13 mice/group). In obese mice, hepatic lipid accumulation, inflammatory infiltrates and serum alanine aminotransferase activity were markedly increased, whereas these markers of hepatic steatosis, inflammation and injury were significantly reduced among obese mice fed GTE. GTE also normalized hepatic 4-hydroxynonenal and 3-nitro-tyrosine (N-Tyr) concentrations to those observed in lean controls. These oxidative and nitrative damage markers were correlated with alanine aminotransferase (P<.05; r=0.410-0.471). Improvements in oxidative and nitrative damage by GTE were also associated with lower hepatic nicotinamide adenine dinucleotide phosphate oxidase activity. Likewise, GTE reduced protein expression levels of hepatic myeloperoxidase and inducible nitric oxide synthase and decreased the concentrations of nitric oxide metabolites. Correlative relationships between nicotinamide adenine dinucleotide phosphate oxidase and hepatic 4-hydroxynonenal (r=0.364) as well as nitric oxide metabolites and N-Tyr (r=0.598) suggest that GTE mitigates lipid peroxidation and protein nitration by suppressing the generation of reactive oxygen and nitrogen species. Further study is warranted to determine whether GTE can be recommended as an effective dietary strategy to reduce the risk of obesity-triggered NASH.  相似文献   

11.
Epigallocatechin-3-gallate (EGCG) is an important bioactive constituent of green tea extract (GTE) that was widely believed to reduce proliferation of many cancer cell lines. The purpose of this study was to verify the possible pro-apoptotic action of GTE/EGCG in human colon adenocarcinoma COLO 205 cells. The effect of EGCG/GTE treatments on cell viability was studied using methyl thiazolyl tetrazolium (MTT) assay. Cell proliferation was assessed with crystal violet staining, whereas protein expression levels were evaluated by western blotting followed by densitometric analysis. Obtained results were analyzed statistically. Surprisingly, EGCG/GTE dose-dependently up-regulated COLO 205 cells viability and proliferation. Observed effects were mediated by lipid rafts, as cholesterol depletion significantly prevented EGCG/GTE-dependent cell survival. Furthermore, treatment of COLO 205 cells with EGCG/GTE resulted in activation of MEK/ERK1/2, but not Akt1/2/GSK-3β signaling pathway. The presence of MEK inhibitor - PD98059 but not PI3-K inhibitor - LY294002, both reduced EGCG/GTE-induced ERK1/2 activation and the proliferative effect of catechins. Furthermore, EGCG/GTE stimulated secretory clusterin (sClu) expression level, which underwent complex control through lipid rafts/PKC/Wnt/β-catenin system. Our studies demonstrated that EGCG and GTE stimulate cell survival and proliferation of COLO 205 cells in a lipid rafts-dependent manner via at least MEK/ERK1/2 signaling pathway. Furthermore, EGCG/GTE mediated positive effects on viability and mitogenicity of COLO 205, while suppression of β-catenin activity was positively correlated with sClu clusterin expression.  相似文献   

12.
The objective of this study was to test the hypothesis that nitric oxide synthase (NOS) is subjected to regulatory control by palmitate, and that nitric oxide (NO) is operative in palmitate-induced cell death. Palmitate induced a significant ( p<0.05 ) concentration-dependent increase in NOS activity measured by the conversion of [(3)H]arginine to [3H]citrulline in embryonic chick cardiomyocytes. Cellular eNOS and iNOS, determined by immunocytochemistry, were increased by palmitate. Western blotting also showed that palmitate, 500 microM for 4h, significantly increased the amount of cellular of eNOS and iNOS by 36.2+/-6.5% ( p<0.001 ) and 38.4+/-14.4% ( p<0.05 ), respectively. The NOS inhibitor L-NAME significantly ( p<0.05 ) accentuated palmitate-induced cell death These data suggest that palmitate has a bifunctional effect on cell viability--in addition to loss of cell viability, palmitate stimulates NOS activity by inducing an increase in cellular eNOS and iNOS with the resultant NO production serving to protect cardiomyocytes from palmitate-induced cell death.  相似文献   

13.
Previously, we have shown that green tea extract (GTE) lowers the intestinal absorption of lipids and lipophilic compounds in rats. This study was conducted to investigate whether GTE inhibits the intestinal absorption and biliary secretion of benzo[a]pyrene (BaP), an extremely lipophilic potent carcinogen, present in foods as a contaminant. Male rats with lymph or bile duct cannula were infused at 3.0 ml/h for 8 h via a duodenal catheter with lipid emulsion containing (14)C-BaP with or without GTE in PBS buffer. Lymph and bile were collected hourly for 8 h. The (14)C-radioactivities in lymph, bile and intestine were determined and expressed as % dose infused. Results showed that GTE drastically lowered the lymphatic absorption of (14)C-BaP (7.6±3.2% in GTE-infused vs. 14.4±2.7% dose/8 h in control rats), with a significantly higher amount of (14)C-radioactivity present in the small intestinal lumen and cecum in rats infused with GTE. GTE also markedly increased the hourly rate (3.9±0.1% dose/h in GTE-infused vs. 3.0±0.1% dose/h in control rats) and the total biliary secretion of (14)C-BaP (31.5±0.8% dose/8 h in GTE-infused vs. 24.3±0.4% dose/8 h in control rats). The findings provide first direct evidence that GTE has a profound inhibitory effect on the intestinal absorption of BaP and promotes the excretion of absorbed BaP via the biliary route. Further studies are warranted to investigate whether green tea could be recommended as a dietary means of ameliorating the toxicity and carcinogenic effect of BaP.  相似文献   

14.
We investigated whether polyphenols modulate the expression and activity of the enzymes gelatinases A (MMP-2) and B (MMP-9), involved in the pathogenesis of multiple sclerosis (MS). LPS-activated primary rat astrocytes were treated with the flavonoids quercetin (QRC) and cathechins [green tea extract (GTE)] and the non-flavonoids resveratrol (RSV) and tyrosol/hydroxytyrosol (Oliplus). As assessed by zymography and RT-PCR, RSV and Oliplus, but not QRC and GTE, dose-dependently inhibited the LPS-induced levels and mRNA expression of MMP-2 and MMP-9. By contrast, in cell-free systems direct inhibition of gelatinase activity in MS sera was determined by QRC and GTE, but not by RSV. Oliplus was only partially effective. Our results indicate that the flavonoids and non-flavonoids tested exert their inhibitory effect on MMPs, displaying different mechanisms of action, possibly related to their structure. Therefore, their combined use may represent a powerful tool for the down-regulation of MMPs in the course of MS.  相似文献   

15.
M.F. Melzig  M. Janka 《Phytomedicine》2003,10(6-7):494-498
Green tea extract (EFLA85942) is able to induce specifically the neutral endopeptidase (NEP) activity and to inhibit the proliferation of SK-N-SH cells; the angiotensin-converting enzyme (ACE) activity is not influenced under the same conditions. The treatment of the cells with arabinosylcytosine and green tea extract results in a strong enhancement of cellular NEP activity whereas cellular ACE activity was not changed significantly, indicating a green tea extract-specific regulation of NEP expression. Because of its role in the degradation of amyloid beta peptides this enzyme induction of NEP by long term treatment with green tea extract may have a beneficial effect regarding the prevention of forming amyloid plaques.  相似文献   

16.
17.
Nitric oxide (NO) and the expression of endothelial (eNOS) and inducible (iNOS) isoforms of nitric oxide synthase (NOS) are recognized as important mediators of physiological and pathological processes of renal ischemia/reperfusion (I/R) injury, but little is known about their role in apoptosis. The ability of the eNOS/NO system to regulate the iNOS/NO system and thus promote apoptosis was assessed during experimental renal I/R. Renal caspase-3 activity and the number of TUNEL-positive cells increased with I/R, but decreased when NOS/NO systems were blocked with L-NIO (eNOS), 1400W (iNOS), and N-nitro-l-arginine methyl ester (L-NAME; a nonselective NOS inhibitor). I/R increased renal eNOS and iNOS expression as well as NO production. The NO increase was eNOS- and iNOS-dependent. Blockage of NOS/NO systems with L-NIO or L-NAME also resulted in a lower renal expression of iNOS and iNOS mRNA; in contrast, eNOS expression was not affected by iNOS-specific blockage. In conclusion, two pathways define the role of NOS/NO systems in the development of apoptosis during experimental renal I/R: a direct route, through eNOS overexpression and NO production, and an indirect route, through expression/activation of the iNOS/NO system, induced by eNOS.  相似文献   

18.
Green tea, prepared from the steamed and dried leaves of the shrub Camellia sinensis, is known for its antioxidant and anti-carcinogenic effects. However, its effects on male gonadal functions have not been explored adequately and the present investigation has been undertaken to evaluate the effect of green tea extract on gonads of adult male albino rats. Results of in vivo studies showed that green tea extract (GTE) at mild (1.25 g%, identical to 5 cups of tea/day), moderate (2.5 g%, identical to 10 cups of tea/day) and high (5.0 g%, identical to 20 cups of tea/day) doses, for a period of 26 days, altered morphology and histology of testis and accessory sex organs. A significant dose-dependent decrease in the sperm counts, inhibited activities of testicular delta(5)3beta-and 17beta-hydroxysteroid dehydrogenase (delta5-3beta3-HSD and 17beta3-HSD respectively) and decreased serum testosterone level were noticed. Significant increase in serum LH level was observed after moderate and high doses; serum FSH level also increased but not significantly. Histopathological examination showed inhibition of spermatogenesis evidenced by preferential loss of matured and elongated spermatids. Results of this study showed that GTE at relatively high dose may cause impairment of both the morphological and normal functional status of testis in rodents and thus its consumption at relatively high doses raises concern on male reproductive function in spite of its other beneficial effects.  相似文献   

19.
Green tea contains a high level of polyphenolic compounds known as catechins. We investigated the effects of green tea extract (GTE), which is rich in catechins, on endurance capacity, energy metabolism, and fat oxidation in BALB/c mice over a 10-wk period. Swimming times to exhaustion for mice fed 0.2-0.5% (wt/wt) GTE were prolonged by 8-24%. The effects were dose dependent and accompanied by lower respiratory quotients and higher rates of fat oxidation as determined by indirect calorimetry. In addition, feeding with GTE increased the level of beta-oxidation activity in skeletal muscle. Plasma lactate concentrations in mice fed GTE were significantly decreased after exercise, concomitant with increases in free fatty acid concentrations in plasma, suggesting an increased lipid use as an energy source in GTE-fed mice. Epigallocatechin gallate (EGCG), a major component of tea catechins, also enhanced endurance capacity, suggesting that the endurance-improving effects of GTE were mediated, at least in part, by EGCG. The beta-oxidation activity and the level of fatty acid translocase/CD36 mRNA in the muscle was higher in GTE-fed mice compared with control mice. These results indicate that GTE are beneficial for improving endurance capacity and support the hypothesis that the stimulation of fatty acid use is a promising strategy for improving endurance capacity.  相似文献   

20.
Hypoxia/reoxygenation (H/R) reportedly influences nitric oxide (NO) production and NO synthase (NOS) expression in the heart. Nonetheless, a number of works have shown controversial results regarding the changes that the cardiac NO/NOS system undergoes under such situations. Therefore, this study aims to clarify the behaviour of this system in the hypoxic heart by investigating seven different reoxygenation times. Wistar rats were submitted to H/R (hypoxia for 30 min; reoxygenation of 0, 2, 12, 24, 48, 72 h, and 5 days) in a novel approach to address the events provoked by assaults under such circumstances. Endothelial and inducible NOS (eNOS and iNOS) mRNA and protein expression, as well as enzymatic activity and enzyme location were determined. NO levels were indirectly quantified as nitrate/nitrite, and other S-nitroso compounds (NOx), which would act as NO-storage molecules. The results showed a significant increase in eNOS mRNA, protein and activity, as well as in NOx levels immediately after hypoxia, while iNOS protein and activity were induced throughout the reoxygenation period. These findings indicate that, not only short-term hypoxia, but also the subsequent reoxygenation period upregulate cardiac NO/NOS system until at least 5 days after the hypoxic stimulus, implying major involvement of this system in the changes occurring in the heart in response to H/R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号