首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) transferase gene of Legionella pneumophila was cloned and sequenced. Despite remarkable structural differences in lipid A, the gene complemented a corresponding Escherichia coli mutant and was shown to encode a bifunctional enzyme which transferred 2 Kdo residues to a lipid A acceptor of E. coli.  相似文献   

2.
Bordetella pertussis lipopolysaccharide (LPS) contains a single 2-keto-3-deoxy-D-manno-octulosonic acid (Kdo) residue, whereas LPS from Escherichia coli contains at least two. Here we report that B. pertussis waaA encodes an enzyme capable of transferring only a single Kdo during the biosynthesis of LPS and that this activity is sufficient to complement an E. coli waaA mutation.  相似文献   

3.
The lipopolysaccharide of Haemophilus influenzae contains a single 3-deoxy-D-manno-octulosonic acid (Kdo) residue derivatized with either a phosphate or an ethanolamine pyrophosphate moiety at the 4-OH position. In previous studies, we identified a kinase unique to H. influenzae extracts that phosphorylates Kdo-lipid IV(A), a key precursor of lipopolysaccharide in this organism. We have now identified the gene encoding the Kdo kinase by using an expression cloning approach. A cosmid library containing random DNA fragments from H. influenzae strain Rd was constructed in Escherichia coli. Extracts of 472 colonies containing individual hybrid cosmids were assayed for Kdo kinase activity. A single hybrid cosmid directing expression of the kinase was found. The kinase gene was identified by activity assays, sub-cloning, and DNA sequencing. When the putative kinase gene was expressed in E. coli behind a T7 promoter, massive overproduction of kinase activity was achieved ( approximately 8000-fold higher than in H. influenzae membranes). The catalytic properties and the product generated by the overexpressed kinase, assayed with Kdo-lipid IV(A) as the substrate, were the same as observed with H. influenzae membranes. Unexpectedly, the kinase gene was identical to a previously characterized open reading frame (orfZ), which had been shown to be important for establishing bacteremia in an infant rat model (Hood, D. W., Deadman, M. E., Allen, T., Masoud, H., Martin, A., Brisson, J. R., Fleischmann, R., Venter, J. C., Richards, J. C., and Moxon, E. R. (1996) Mol. Microbiol. 22, 951-965). However, based solely on the genome sequence of H. influenzae Rd, no biochemical function had been assigned to the product of orfZ, which we now designate kdkA ("Kdo kinase A"). Although Kdo phosphorylation may be critical for bacterial virulence of H. influenzae, it does not appear to be required for growth.  相似文献   

4.
MutH, MutL and MutS are essential components of the mismatch repair system in Escherichia coli. Whereas mutS and mutL genes are found in most organisms, the mutH gene is limited to some proteobacteria. We show here that the cloned genes of MutH from Vibrio cholerae and Haemophilus influenzae are able to fully complement a mutH defect in E. coli. Moreover, the purified proteins were shown to be dam methylation sensitive endonucleases, which can be activated by the E. coli MutL protein. These results allow to narrow down regions that are important for the interaction of MutH with MutL.  相似文献   

5.
Bubonic plague is transmitted by fleas whose feeding is blocked by a Yersinia pestis biofilm in the digestive tract. Y. pestis also block feeding of Caenorhabditis elegans by forming a biofilm on the nematode head, making the nematode an experimentally tractable surrogate for fleas to study plague transmission. Arabinose 5-phosphate isomerase (API), encoded by Y. pestis yrbH, catalyses the conversion of ribulose 5-phosphate into arabinose 5-phosphate (A5P), the first committed step in the 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) biosynthesis pathway. Here we show that Y. pestis YrbH is a multifunctional protein required for both Kdo biosynthesis and biofilm formation on C. elegans. The YrbH protein contains four functional components: biofilm-related region 1 (B1), a sugar isomerase domain (SIS), biofilm-related region 2 (B2) and a cystathionine beta-synthase domain pair (CBS). B1, SIS and B2 are all required for API function, but any of the three is sufficient for a biofilm-related function. The CBS domain appears to negatively regulate the biofilm-related function.  相似文献   

6.
The Escherichia coli K-12 strain KPM22, defective in synthesis of 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo), is viable with an outer membrane (OM) composed predominantly of lipid IV(A), a precursor of lipopolysaccharide (LPS) biosynthesis that lacks any glycosylation. To sustain viability, the presence of a second-site suppressor was proposed for transport of lipid IV(A) from the inner membrane (IM), thus relieving toxic side-effects of lipid IV(A) accumulation and providing sufficient amounts of LPS precursors to support OM biogenesis. We now report the identification of an arginine to cysteine substitution at position 134 of the conserved IM protein YhjD in KPM22 that acts as a compensatory suppressor mutation of the lethal DeltaKdo phenotype. Further, the yhjD400 suppressor allele renders the LPS transporter MsbA dispensable for lipid IV(A) transmembrane trafficking. The independent derivation of a series of non-conditional KPM22-like mutants from the Kdo-dependent parent strain TCM15 revealed a second class of suppressor mutations localized to MsbA. Proline to serine substitutions at either residue 18 or 50 of MsbA relieved the Kdo growth dependence observed in the isogenic wild-type strain. The possible impact of these suppressor mutations on structure and function are discussed by means of a computationally derived threading model of MsbA.  相似文献   

7.
《Carbohydrate research》1987,165(1):17-22
On heating in dilute acid, 3-deoxy-d-manno-oct-2-ulosonic acid (KDO) is converted into 2,7-anhydro-3-deoxy-α-d-manno-2-octulofuranosonic acid and 5-(d-erythro-1,2,3-trihydropropyl)-2-furoic acid. The former is unreactive to periodic acid-thiobarbituric acid and to semicarbazide, and its formation explains the depressed estimates of KDO in lipopolysaccharides. Formation of the furoic acid can lead to high estimates using the semicarbazide assay. Neither product can be formed from 5-O-glycosyl-KDO.  相似文献   

8.
The metabolic regulation of Escherichia coli lacking a functional pykF gene was investigated based on gene expressions, enzyme activities, intracellular metabolite concentrations and the metabolic flux distribution obtained based on (13)C-labeling experiments. RT-PCR revealed that the glycolytic genes such as glk, pgi, pfkA and tpiA were down regulated, that ppc, pckA, maeB and mdh genes were strongly up-regulated, and that the oxidative pentose phosphate pathway genes such as zwf and gnd were significantly up-regulated in the pykF mutant. The catabolite repressor/activator gene fruR was up-regulated in the pykF mutant, but the adenylate cyclase gene cyaA was down-regulated indicating a decreased rate of glucose uptake. This was also ascertained by the degradation of ptsG mRNA, the gene for which was down-regulated in the pykF mutant. In general, the changes in enzyme activities more or less correlated with ratios of gene expression, while the changes in metabolic fluxes did not correlate with enzyme activities. For example, high flux ratios were obtained through the oxidative pentose phosphate pathway due to an increased concentration of glucose-6-phosphate rather than to favorable enzyme activity ratios. In contrast, due to decreased availability of pyruvate (and acetyl coenzyme A) in the pykF mutant compared with the wild type, low flux ratios were found through lactate and acetate forming pathways.  相似文献   

9.
The waaA gene encoding the essential, lipopolysaccharide (LPS)-specific 3-deoxy-Dmanno-oct-2-ulosonic acid (Kdo) transferase was inactivated in the chromosome of a heptosyltransferase I and II deficient Escherichia coli K-12 strain by insertion of gene expression cassettes encoding the waaA genes of Chlamydia trachomatis, Chlamydophila pneumoniae or Chlamydophila psittaci. The three chlamydial Kdo transferases were able to complement the knockout mutation without changing the growth or multiplication behaviour. The LPS of the mutants were serologically and structurally characterized in comparison to the LPS of the parent strain using compositional analyses, high performance anion exchange chromatography, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and specific monoclonal antibodies. The data show that chlamydial Kdo transferases can replace in E. coli K-12 the host's Kdo transferase and retain the product specificities described in their natural background. In addition, we unequivocally proved that WaaA from C. psittaci transfers predominantly four Kdo residues to lipid A, forming a branched tetrasaccharide with the structure alpha-Kdo-(2-->8)-[alpha-Kdo-(2-->4)]-alpha-Kdo-(2-->4)-alpha-Kdo.  相似文献   

10.
Despite a very complex structure, the sugar composition of the rhamnogalacturonan II (RG-II) pectic fraction is extremely conserved. Among its constituting monosaccharides is the seldom-observed eight-carbon sugar 3-deoxy-D-manno-octulosonic acid (Kdo), whose phosphorylated precursor is synthesized by Kdo-8-P synthase. As an attempt to alter specifically the RG-II structure in its sugar composition and assess the consequences on the function of RG-II in cell wall and its relationship with growth, Arabidopsis null mutants were sought in the genes encoding Kdo-8-P synthase. Here, the isolation and characterization of one null mutant for the isoform 1 (AtkdsA1-S) and two distinct null mutants for the isoform 2 of Arabidopsis Kdo-8-P synthase (AtkdsA2-V and AtkdsA2-S) are described. Evidence is provided that AtkdsA2 gene expression is preferentially associated with plantlet organs displaying a meristematic activity, and that it accounts for 75% of the mRNAs to be translated into Kdo-8-P synthase. Furthermore, this predominant expression of AtKDSA2 over AtKDSA1 was confirmed by quantification of the cytosolic Kdo content in the mutants, in a variety of ecotypes. The inability to identify a double knockout mutant originated from pollen abortions, due to the inability of haploid pollen of the AtkdsA1- AtkdsA2- genotype to form an elongated pollen tube properly and perform fertilization.  相似文献   

11.
GseA is an enzyme from Chlamydia trachomatis that can catalyse the addition of three 3-deoxy-D-manno-octulosonic acid (Kdo) residues onto lipid A precursors. GseA is similar, and in a few stretches identical, in its amino acid sequence to KdtA, an Escherichia coli Kdo transferase. In this study we altered an amino acid of GseA in a region that is identical between GseA and KdtA to test its importance in the structure or catalytic activity of GseA. We found that when Arg276 was changed to Lys, Ile or Ser, GseA activity was lost, suggesting an enzymatic role for this amino acid residue.  相似文献   

12.
In this report the first example of functional expression of a fimbrial gene cluster of a non-enteric human pathogen in Escherichia coli is described. This is shown for Haemophilus influenzae fimbriae which mediate adherence to oropharyngeal epithelial cells. A genomic library of H.influenzae type b, strain 770235f+bo, was constructed using a cosmid vector and screened with a synthetic oligonucleotide probe derived from the N-terminal sequence of the fimbrial subunit of H.influenzae. Four cosmid clones were found which hybridized to this oligonucleotide probe. Escherichia coli strains harbouring these clones expressed the H.influenzae fimbriae at their cell surface, as was demonstrated in a whole-cell ELISA and by immunogold electron microscopy using a monoclonal antibody specific for the H.influenzae fimbriae. Surface expression could be maintained during subcloning until a minimal H.influenzae DNA insert of approximately 8.1 kb was obtained. Escherichia coli strains harbouring the 8.1 kb H. influenzae DNA were able to cause a mannose-resistant adherence to oropharyngeal epithelial cells and a mannose-resistant haemagglutination of human AnWj-positive erythrocytes. The nucleotide sequence of hifA, the gene encoding the major fimbrial subunit, was determined. The predicted amino acid sequence shows a significant homology with a number of E.coli fimbrial subunits.  相似文献   

13.
G B Cox  D Webb    H Rosenberg 《Journal of bacteriology》1989,171(3):1531-1534
Three mutant alleles of the pstC gene and one mutant allele of the pstB gene were produced by site-directed mutagenesis. The pstC gene encodes an integral membrane protein of the phosphate-specific transport (Pst) system of Escherichia coli. The amino acid substitutions resulting from the pstC gene mutations, Arg-237----Gln, Glu-240----Gln, or a combination of both, caused the loss of phosphate transport through the Pst system, but the alkaline phosphatase activity remained repressed. The pstB gene encodes a peripheral membrane protein of the Pst system which carries a putative nucleotide-binding site. The amino acid substitutions Gly-48----Ile and Lys-49----Gln, resulting from the pstB mutations, caused the loss of phosphate transport through the Pst system and the derepression of alkaline phosphatase activity. The residues Gly-48 and Lys-49 are key residues in the putative nucleotide-binding site.  相似文献   

14.
Previously, we reported the expression of chimeric lipopolysaccharides (LPS) in Escherichia coli strain JM109 (a K-12 strain) transformed with plasmids containing Haemophilus influenzae lipooligosaccharide synthesis genes (lsg) (Abu Kwaik, Y., McLaughlin, R. E., Apicella, M. A., and Spinola, S. M. (1991) Mol. Microbiol. 5, 2475-2480). In this current study, we have analyzed the O-deacylated LPS and free oligosaccharides from three transformants (designated pGEMLOS-4, pGEMLOS-5, and pGEMLOS-7) by matrix-assisted laser desorption ionization, electrospray ionization, and tandem mass spectrometry techniques, along with composition and linkage analyses. These data show that the chimeric LPS consist of the complete E. coli LPS core structure glycosylated on the 7-position of the non-reducing terminal branch heptose with oligosaccharides from H. influenzae. In pGEMLOS-7, the disaccharide Gal1--> 3GlcNAc1--> is added, and in pGEMLOS-5, the structure is extended to Gal1-->4GlcNAc1-->3Gal1-->3GlcNAc1-->. PGEMLOS-5 LPS reacts positively with monoclonal antibody 3F11, an antibody that recognizes the terminal disaccharide of lacto-N-neotetraose. In pGEMLOS-4 LPS, the 3F11 epitope is apparently blocked by glycosylation on the 6-position of the terminal Gal with either Gal or GlcNAc. The biosynthesis of these chimeric LPS was found to be dependent on a functional wecA (formerly rfe) gene in E. coli. By using this carbohydrate expression system, we have been able to examine the functions of the lsg genes independent of the effects of other endogenous Haemophilus genes and expressed proteins.  相似文献   

15.
16.
Pyoverdin was purified by solvent extraction, gel filtration, and ionic exchange chromatography. Assays of cytotoxic of pyoverdin were done with human leukocytes and macrophages from the peritoneum of mice. Both cell quantities showed a significant reduction. Death was followed by lysis in a dose-dependent form. The mechanism of action of pyoverdin involved the stimulation of reactive oxygen species (ROS) measured by Nitroblue Tetrazolium (NBT) reaction and chemiluminescence (CL). UV radiation at 368 nm increased the leukotoxicity; expositions of 5 min were enough to photostimulate the effect of pyoverdin on cellular oxydative metabolism, which increased between 35.4 and 53.2%. Genestein, an inhibitor of tyrosine kinases, counteracted the ROS stimuli of pyoverdin, suggesting endocytic mechanism of action for this pigment. The little chloroquine interference on oxydative stress indicated that intraphagosomal pH and the stimuli of reactive nitrogen intermediaries (RNI) seem to be of less importance than ROS in pyoverdin action on leukocytes.  相似文献   

17.
18.
A gastric [U-14C]glucose load (4.8 mg/g body wt.) was delivered to unrestrained post-absorptive or 30 h-starved rats bearing peripheral and portal vein catheters and continuously perfused with [3-3H]glucose, in order to compare their metabolic and hormonal responses. In the basal state, portal and peripheral glycaemia were less in starved rats than in rats in the post-absorptive period (P less than 0.01), whereas blood lactate was similar. Portal insulinaemia (P less than 0.05) and protal glucagonaemia (P less than 0.005) were lower in starved rats, but insulin/glucagon ratio was higher in post-absorptive rats (P less than 0.005). The glucose turnover rate was decreased by starvation (P less than 0.005). After glucose ingestion, blood glucose was similar in post-absorptive and starved rats. A large portoperipheral gradient of lactate appeared in starved rats. Portal insulinaemia reached a peak at 9 min, and was respectively 454 +/- 68 and 740 +/- 65 mu-units/ml in starved and post-absorptive rats. Portal glucagonaemia remained stable, but was higher in post-absorptive rats (P less than 0.05). At 60 min after the gastric glucose load, 30% of the glucose was delivered at the periphery in both groups. The total glucose appearance rate was higher in starved rats (P less than 0.05), as was the glucose utilization rate (P less than 0.05), whereas the rate of appearance of exogenous glucose was similar. This was due to a non-suppressed hepatic glucose production in the starved rats, whereas it was totally suppressed in post-absorptive rats. At 1 h after the glucose load, the increase in both liver and muscle glycogen concentration was greater in starved rats. Thus short-term fasting induces an increased portal lactate concentration after a glucose load, and produces a state of liver insulin unresponsiveness for glucose production, whereas the sensitivity of peripheral tissues for glucose utilization is unchanged or even increased. This might allow preferential replenishment of the peripheral stores of glycogen.  相似文献   

19.
H H el-Hajj  H Zhang    B Weiss 《Journal of bacteriology》1988,170(3):1069-1075
A chloramphenicol resistance gene was cloned into a plasmid-borne dut gene, producing an insertion mutation that was then transferred to the chromosome by allelic exchange. The mutation could not be acquired by haploid strains through substitutive recombination, even when two flanking markers were simultaneously transduced. The insertion was easily transferred, via generalized transduction, into the chromosomal dut region of strains harboring a lambda dut + transducing phage; however, the resulting dut mutant/lambda dut + merodiploid could not then be cured of the prophage. This apparent lethality of the mutation could not be explained by effects on adjacent genes; the dfp gene retained complementing activity, and a ttk insertion mutant was viable. The dut gene product, deoxyuridine triphosphatase, is known to reduce incorporation of uracil into DNA and to be required in the de novo synthesis of thymidylate. Therefore, an attempt was made to determine whether the dut insertion would be tolerated in strains carrying the following compensatory mutations: dcd (dCTP deaminase) and cdd (deoxycytidine deaminase), which should reduce dUTP formation; ung (uracil-DNA glycosylase), which should reduce fatally excessive excision repair; deoA (thymidine phosphorylase), which should enhance the utilization of exogenous thymidine; and sulA, which should reduce the lethal side effects of SOS regulon induction. These mutations, either alone or in various combinations, did not permit the survival of a haploid dut insertion mutant, suggesting that the dut gene product might have an essential function apart from its deoxyuridine triphosphatase activity.  相似文献   

20.
Map is an enteropathogenic Escherichia coli (EPEC) protein that is translocated into eukaryotic cells by a type III secretion system. Although not required for the induction of attaching and effacing (A/E) lesion formation characteristic of EPEC infection, translocated Map is suggested to disrupt mitochondrial membrane potential, which may impact upon subsequent functions of the organelle such as control of cell death. Before secretion, many effector proteins are maintained in the bacterial cytosol by association with a specific chaperone. In EPEC, chaperones have been identified for the effector proteins translocated intimin receptor (Tir) and EspF, and for the translocator proteins EspB and EspD. In this study, we present evidence that the Tir-specific chaperone, CesT, also performs a chaperone function for Map. Using a combination of biochemical approaches, we demonstrate specific interaction between CesT and Map. Similar to other chaperone-effector pairings, binding is apparent at the amino-terminus of Map and is indicated to proceed by a similar mechanism to CesT:Tir interaction. Map secretion from a cesT mutant strain (SE884) is shown to be reduced and, importantly, its translocation from this strain after infection of HEp-2 cells is almost totally abrogated. Although other chaperones are reported to have a bivalent binding specificity, CesT is the first member of its family that chaperones more than one protein for translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号