首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amplified nucleoli of Xenopus laevis oocytes contain a major karyoskeletal protein of Mr 145 000 insoluble in low- and high-salt buffer as well as in non-denaturing detergents. Electron microscopic localization on native and high-salt extracted nucleoli using specific murine antibodies against this polypeptide and gold-coupled antibodies for visualization reveals that the Mr 145 000 protein is located in coils of filaments of ca 4 nm diameter. In addition, this protein occurs in the medusoid filament bodies (MFBs) present in the nucleolar cortex and free in the nucleoplasm. In somatic cells of tissues and in A6 kidney epithelial cells grown in vitro the Mr 145 000 polypeptide or an immunologically related protein is also organized in coiled aggregates of filaments 4-12 nm in diameter present both in the periphery of nucleoli and free in the nucleoplasm. We discuss a possible role of this protein as a karyoskeletal support involved in the storage and transport of preribosomal particles.  相似文献   

2.
The nucleolus is a ubiquitous, mostly spheroidal nuclear structure of all protein-synthesizing cells, with a well-defined functional compartmentalization. Although a number of nonribosomal proteins involved in ribosome formation have been identified, the elements responsible for the shape and internal architecture of nucleoli are still largely unknown. Here, we report the molecular characterization of a novel protein, NO145, which is a major and specific component of a nucleolar cortical skeleton resistant to high salt buffers. The amino acid sequence of this polypeptide with a SDS-PAGE mobility corresponding to M(r) 145,000 has been deduced from a cDNA clone isolated from a Xenopus laevis ovary expression library and defines a polypeptide of 977 amino acids with a calculated mass of 111 kDa, with partial sequence homology to a synaptonemal complex protein, SCP2. Antibodies specific for this protein have allowed its recognition in immunoblots of karyoskeleton-containing fractions of oocytes from different Xenopus species and have revealed its presence in all stages of oogenesis, followed by a specific and rapid degradation during egg formation. Immunolocalization studies at the light and electron microscopic level have shown that protein NO145 is exclusively located in a cage-like cortical structure around the entire nucleolus, consisting of a meshwork of patches and filaments that dissociates upon reduction of divalent cations. We propose that protein NO145 contributes to the assembly of a karyoskeletal structure specific for the nucleolar cortex of the extrachromosomal nucleoli of Xenopus oocytes, and we discuss the possibility that a similar structure is present in other cells and species.  相似文献   

3.
The nuclear envelope (NE) of Xenopus laevis contains a major architectural protein which is resistant to extraction in high salt buffer and non-ionic detergent and is characterized by a polypeptide molecular weight (MW) of 68000. Two different antisera which showed specific binding of antibodies (IgG) to this polypeptide, as demonstrated by ‘immunoblotting’ techniques, were used for immunolocalization at the electron microscopic level. Whereas antibodies of serum I reacted only with the nuclear lamina structure, antibodies of serum II, which were raised against undenatured karyoskeletal protein from oocytes, showed additional strong reaction in nuclear pore complexes. This first positive localization of a polypeptide in the nuclear pore complex suggests that MW 68000 polypeptide contributes as a major karyoskeletal component to the structure of both the lamina and the pore complex.  相似文献   

4.
Immunofluorescence microscopy shows that the monoclonal murine antibody PKB8 stains the nuclear lamina of various somatic cells from vertebrates as diverse as mammals, birds and amphibia. It also decorates the nuclear periphery of oocytes from rat and chicken but does not react with spermatocytes, spermatids and spermatozoa. Immunoblotting experiments demonstrate reaction with lamina polypeptides A, B and C of rat, with lamina polypeptide A of chicken, and with lamina polypeptides LI and LII of erythrocytes of the frog, Xenopus laevis. Antibody PKB8 does, however, not bind, on blotted polypeptides and on sections through ovaries, to the pore complex-lamina polypeptide of Mr 68000 present in Xenopus oocytes. These results reveal the existence of a common antigenic determinant in all three lamina polypeptides of mammals, in one lamina polypeptide of chicken and in two amphibian lamina polypeptides. The immunological data also indicate that, in Xenopus laevis, pore complex-lamina polypeptides of somatic cells and oocytes are distinct. The Mr 68000 protein of Xenopus oocytes is also different from polypeptides LI and LII of somatic Xenopus cells by tryptic peptide mapping. The results suggest that nuclear pore complex-lamina polypeptides represent a family of related polypeptides containing regions highly conserved during evolution and that these polypeptides can be differentially expressed in cells of at least one species, Xenopus laevis.  相似文献   

5.
Using monoclonal antibodies we have localized a polypeptide, appearing on gel electrophoresis with a Mr of approximately 38,000 and a pI of approximately 5.6, to the granular component of the nucleoli of Xenopus laevis oocytes and a broad range of cells from various species. The protein (NO38) also occurs in certain distinct nucleoplasmic particles but is not detected in ribosomes and other cytoplasmic components. During mitosis NO38-containing material dissociates from the nucleolar organizer region and distributes over the chromosomal surfaces and the perichromosomal cytoplasm; in telophase it re-populates the forming nucleoli. With these antibodies we have isolated from a X. laevis ovary lambda gt11 expression library a cDNA clone encoding a polypeptide which, on one- and two-dimensional gel electrophoresis, co-migrates with authentic NO38. The amino acid sequence deduced from this clone defines a polypeptide of 299 amino acids of mol. wt 33,531 which is characterized by the presence of two domains exceptionally rich in aspartic and glutamic acid, one of them flanked by two putative karyophilic signal heptapeptides. Comparison with other protein sequences shows that NO38 is closely related to the histone-binding, karyophilic protein nucleoplasmin: the first 124 amino acids have 58 amino acid positions in common. Protein NO38 also shows striking homologies to the phosphopeptide region of rat nucleolar protein B23 and the carboxyterminal region of human B23. We propose that protein NO38, which forms distinct homo-oligomers of approximately 7S and Mr of approximately 230,000, is a member of a family of karyophilic proteins, the 'nucleoplasmin family'. It is characterized by its specific association with the nucleolus and might be involved in nuclear accumulation, nucleolar storage and pre-rRNA assembly of ribosomal proteins in a manner similar to that discussed for the role of nucleoplasmin in histone storage and chromatin assembly.  相似文献   

6.
A yeast plasmid partitioning protein is a karyoskeletal component   总被引:17,自引:0,他引:17  
The Saccharomyces yeast plasmid, 2-micron circle, encodes a partitioning system that ensures equidistribution of plasmid molecules to both progeny following cell division. This system consists of two proteins encoded in plasmid genes REP1 and REP2 and a cis-active noncoding locus, designated REP3. We have raised antibodies against a REP1 beta-galactosidase fusion protein and used them to identify the authentic REP1 protein in plasmid-bearing yeast cells. We find that REP1 protein is located exclusively in the nucleus and co-purifies with a karyoskeletal protein subfraction operationally and morphologically equivalent to the nuclear matrix-pore complex-lamina fraction of higher cells. The carboxyl half of the REP1 protein exhibits strong sequence homology to myosin heavy chain, vimentin, and nuclear lamins A and C, indicating a fibrous structure for the protein. From these observations, we suggest that REP1 protein may promote plasmid partitioning by intercalating into the nuclear lamina of the host cell to provide dispersed anchorage sites for attachment of plasmid molecules.  相似文献   

7.
8.
Intermediate filaments in nervous tissues   总被引:59,自引:30,他引:29  
Intermediate filaments have been isolated from rabbit intradural spinal nerve roots by the axonal flotation method. This method was modified to avoid exposure of axons to low ionic strength medium. The purified filaments are morphologically 75-80 percent pure. The gel electrophoretogram shows four major bands migrating at 200,000, 145,000, 68,000, and 60,000 daltons, respectively. A similar preparation from rabbit brain shows four major polypeptides with mol wt of 200,000 145,000, 68,000, and 51,000 daltons. These results indicate that the neurofilament is composed of a triplet of polypepetides with mol wt of 200,000, 145,000, and 68,000 daltons. The 51,000-dalton band that appears in brain filament preparations as the major polypeptide seems to be of glial origin. The significance of the 60,000- dalton band in the nerve root filament preparation is unclear at this time. Antibodies raised against two of the triplet proteins isolated from calf brain localize by immunofluorescence to neurons in central and peripheral nerve. On the other hand, an antibody to the 51,000-dalton polypeptide gives only glial staining in the brain, and very weak peripheral nerve staining. Prolonged exposure of axons to low ionic strength medium solubilizes almost all of the triplet polypeptides, leaving behind only the 51,000- dalton component. This would indicate that the neurofilament is soluble at low ionic strength, whereas the glial filament is not. These results indicate that neurofilaments and glial filaments are composed of different polypeptides and have different solubility characteristics.  相似文献   

9.
Coiled bodies without coilin.   总被引:13,自引:2,他引:11       下载免费PDF全文
Nuclei assembled in vitro in Xenopus egg extract contain coiled bodies that have components from three different RNA processing pathways: pre-mRNA splicing, pre-rRNA processing, and histone pre-mRNA 3'-end formation. In addition, they contain SPH-1, the Xenopus homologue of p80-coilin, a protein characteristic of coiled bodies. To determine whether coilin is an essential structural component of the coiled body, we removed it from the egg extract by immunoprecipitation. We showed that nuclei with bodies morphologically identical to coiled bodies (at the light microscope level) formed in such coilin-depleted extract. As expected, these bodies did not stain with antibodies against coilin. Moreover, they failed to stain with an antibody against the Sm proteins, although Sm proteins associated with snRNAs were still present in the extract. Staining of the coilin- and Sm-depleted coiled bodies was normal with antibodies against two nucleolar proteins, fibrillarin and nucleolin. Similar results were observed when Sm proteins were depleted from egg extract: staining of the coiled bodies with antibodies against the Sm proteins and coilin was markedly reduced but bright nucleolin and fibrillarin staining remained. These immunodepletion experiments demonstrate an interdependence between coilin and Sm snRNPs and suggest that neither is essential for assembly of nucleolar components in coiled bodies. We propose that coiled bodies are structurally heterogeneous organelles in which the components of the three RNA processing pathways may occur in separate compartments.  相似文献   

10.
In order to identify argyrophilic proteins of nuclei and nucleoli, in particular those responsible for the ‘nucleolar Ag staining’ widely used in cytology, we have utilized oocytes of Xenopus laevis because of the abundance of ‘pure’ extrachromosomal nucleoli. Examination of oocytes by light and electron microscopy shows that the large extrachromosomal nucleoli are heavily stained with the Ag technique and that the Ag deposits are largely enriched in, if not exclusive to, the internal, fibrillar region. The same pattern of Ag staining in internal regions of nucleoli is observed in isolated nucleoli from which soluble nuclear proteins were removed by extensive washing. Argyrophilic proteins of isolated oocyte nuclei and purified nucleoli have been identified by reaction with AgNO3 and formaldehyde on gel-electrophoretically separated polypeptides. Among nuclear proteins, the most prominent argyrophilia is associated with nucleoplasmin, a soluble MW 30000 phosphoprotein of the nuclear sap. In addition, four minor Ag-staining nuclear proteins have been observed. By contrast, the only strongly argyrophilic protein observed on gel electrophoresis of proteins of purified nucleoli is a high molecular weight component (apparent MW 195000) which is often resolved in a characteristic ‘pair’ of closely spaced polypeptide bands. The enrichment of this high molecular weight argyrophilic protein in isolated nucleoli and the corresponding absence of argyrophilic proteins of the nuclear sap, including nucleoplasmin, indicates that this protein contributes to the nucleolus-specific Ag staining observed in histological sections. The possible nature of this polypeptide of MW 195000 is discussed.  相似文献   

11.
Lamins are karyoskeletal proteins associated with the nuclear envelope which can be divided into two groups, i.e. the type A lamins of near neutral pI and the more acidic lamins, including mammalian lamin B. We have isolated cDNA clones encoding a representative of the type B subfamily from Xenopus laevis, and have deduced its amino acid sequence from the coding portion of the approximately 2.9 kb mRNA. The polypeptide (mol. wt 66,433) is identified as a typical lamin by its homology to Xenopus human type A lamins, but detailed sequence comparison shows that LI is less related to Xenopus lamin A than the latter is to human lamin A. The conformation predicted for LI conforms to the general model of lamins and intermediate filament proteins and is characterized by an extended central alpha-helical coiled coil domain, flanked by non-alpha-helical domains, i.e. a relatively short N-terminal head and a long C-terminal tail. As in lamins A and C, the head of lamin LI is positively charged and the tail presents a similar C-terminal pentapeptide, a putative nuclear accumulation signal, a very negatively charged region and a number of short regions that are highly homologous in all lamins. However, LI differs from the type A lamins by the absence of the oligo-histidine stretch and a di-proline motif in the tail region and by a significantly lower number of identical amino acid positions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
Using immunofluoresence method, sera M-311 and K-30 obtained from patients with autoimmune disease were shown to stain interphase nuclei and the periphery of chromosomes. Western blotting revealed a polypeptide with mol. mass 27 kDa in serum K-30. Both proteins were localized in the karyoplasm. One of them (27 kDa) has a diffuse form and contains small granules, while the other (40 kDa) is in the form of small clearly outlined granules. Both proteins are also revealed around the nucleolar periphery, making a continental ring, while the main part of the nucleolus remains unstained. During pro- and metaphase, these proteins were associated with the chromosomal periphery: 27 kDa protein formed separate groups, and 40 kDa protein was seen over the whole chromosomal periphery. After nuclear and chromosomal decondensation, induced by hypotonic treatment (15% of culture medium solution), both antibodies stain diffusively interphase nuclei, but in mitotic cells they stained the surface of the swollen chromosomes. After chromatin recondensation in isotonic medium these proteins were localized similarly as in normal cells. Thus, both proteins maintained their association with the periphery of chromosomes. To reveal the nuclear protein matrix, cells were treated with 2M NaCl, DNAase and RNAase A. After this procedure, the antibodies stained only the nucleolar periphery, and no fluorescence in the karyoplasm was seen. It shows that of all the components of the nuclear protein matrix (lamina, internuclear network, residual nucleoli) only 27 and 40 kDa proteins are contained in the nucleolar rim. The data allow to suggest that the nucleolar matrix proteins may be transported to new cell nuclei as part of the peripheral chromosomal material likely as other nucleolar (fibrillarin, B-23, and others) or some non-nuclear components of the nuclear protein matrix are transported.  相似文献   

14.
It has recently become clear that the nucleolus, the most prominent nuclear subcompartment, harbors diverse functions beyond its classic role in ribosome biogenesis. To gain insight into nucleolar functions, we have purified amplified nucleoli from Xenopus laevis oocytes using a novel approach involving fluorescence-activated cell sorting techniques. The resulting protein fraction was analyzed by mass spectrometry and used for the generation of monoclonal antibodies directed against nucleolar components. Here, we report the identification and molecular characterization of a novel, ubiquitous protein, which in most cell types appears to be a constitutive nucleolar component. Immunolocalization studies have revealed that this protein, termed NO66, is highly conserved during evolution and shows in most cells analyzed a dual localization pattern, i.e., a strong enrichment in the granular part of nucleoli and in distinct nucleoplasmic entities. Colocalizations with proteins Ki-67, HP1alpha, and PCNA, respectively, have further shown that the staining pattern of NO66 overlaps with certain clusters of late replicating chromatin. Biochemical experiments have revealed that protein NO66 cofractionates with large preribosomal particles but is absent from cytoplasmic ribosomes. We propose that in addition to its role in ribosome biogenesis protein NO66 has functions in the replication or remodeling of certain heterochromatic regions.  相似文献   

15.
The possibility that proteins are modified during axoplasmic transport in central nervous system axons was examined by analyzing neurofilament proteins (200,000, 140,000, and 70,000 mol wt) along the mouse primary optic pathway (optic nerve and optic tract). The major neurofilament proteins (NFPs) exhibited considerable microheterogeneity. At least three forms of the “ 140,000” neurofilament protein differing in molecular weight by SDS PAGE (140,000-145,000 mol wt) were identified. The “140,000” proteins, and their counterparts in purified neurofilament preparations, displayed similar isoelectric points and the same peptide maps. The “140,000” NFPs exhibited regional heterogeneity when consecutive segments of the optic pathway were separately examined on polyacrylamide gels. Two major species (145,000 and 140,000 mol wt) were present along the entire length of the optic pathway. The third protein (143,000 mol wt) was absent proximally but became increasingly prominent in distal segments. After intravitreal injection of [(3)H]proline, newly synthesized radiolabeled proteins in the “140,000” mol wt region entered proximal mouse retinal ganglion cell (RGC) axons as two major species corresponding to the 145,000 and 14,000 mol wt NFPs observed on stained gels. When transported NFPs reached more distal axonal regions (30 d postinjection or longer), a 143,000 mol wt protein appeared that was similar in isoelectric point and peptide map to the 145,000 and 140,000 mol wt species. The results suggest that (a) the composition of CNS neurofilaments, particularly the “140,000” component, is more complex than previously recognized, that (b) retinal ganglion cell axons display regional differentiation with respect to these cytoskeletal proteins, and that (c) structural heterogeneity of “140,000” NFPs arises, at least in part, from posttranslational modification during axoplasmic transport. When excised but intact optic pathways were incubated in vitro at pH 7.4, a 143,000 NFP was rapidly formed by a calcium-dependent enzymatic process active at endogenous calcium levels. Changes in major proteins other than those in the 145,000-140,000 mol wt region were minimal. In optic pathways from mice injected intravitreally with L-[(3)H]proline, tritiated 143,000 mol wt NFP formed rapidly in vitro if radioactively labeled NFPs were present in distal RGC axonal regions (31 d postinjection). By contrast, no 143,000 mol wt NFP was generated if radioactively labeled NFPs were present proximally in RGC axons (6 d postinjection). The enzymatic process that generates 143,000 mol wt NFP in vitro, therefore, appears to have a nonuniform distribution along the RGC axons. The foregoing results and other observations, including the accompanying report (J. Cell Biol., 1982, 94:159-164), imply that CNS axons may be regionally specialized with respect to structure and function.  相似文献   

16.
Myelin purified from the central nervous system of Xenopus laevis contained the same major lipid and protein components as human myelin. However, some minor differences in the myelin proteins were noted. The Xenopus basic protein had a higher apparent mol wt. on sodium dodecyl sulfate gels than the corresponding mammalian protein. The absolute specific activity of 2',3'-cyclic nucleotide 3'-phosphohydrolase in the Xenopus myelin was considerably higher than in mammals. There were differences in the high mol wt. proteins, and the glycoproteins in Xenopus myelin were more heterogeneous than those in mammals. Peripheral myelin from Xenopus sciatic nerve was compared with that from the rat. The lipids in the two types of myelin were similar. There was a major glycoprotein in the Xenopus myelin corresponding to the P0 protein and a basic protein of slightly larger mol wt. than the P1 protein of rat myelin.  相似文献   

17.
18.
Karyoskeletal protein fractions prepared from Drosophila melanogaster embryos contain morphologically identifiable remnants of nuclear pore complexes and peripheral lamina as well as what appears to be an internal nuclear "matrix" (Fisher, P. A., M. Berrios, and G. Blobel, 1982, J. Cell Biol., 92: 674-686). Structural stability of these proteinaceous assemblies is dependent on thermal incubation in vitro (37 degrees C, 15 min) before subfractionation of nuclei. In the absence of such incubation, greater than 90% of the total karyoskeletal protein including major polypeptide components of internal "matrix," pore complexes, and the peripheral lamina, is solubilized by 1 M NaCl. In vivo heat shock induces karyoskeletal stabilization resembling that resulting from thermal incubation in vitro. Immunocytochemical studies have been used to establish the effects of heat shock on the organization and distribution of major karyoskeletal marker proteins in situ. Taken together, these results are consistent with the notion that in vivo, regulation of karyoskeletal plasticity (and perhaps form) may be a functionally significant component of the Drosophila heat shock response. They also have broad practical implications for studies pertaining to the structure and function of karyoskeletal protein (nuclear "matrix") fractions isolated from higher eukaryotic cells.  相似文献   

19.
20.
Nuclear envelopes from oocytes of Xenopus laevis are rich in pore complexes and contain a major polypeptide of apparent molecular weight (Mr) 68,000. A rapid extraction procedure using buffer containing 1% (vv) Triton X-100 and 1.0 m-KCl allows the preparation of insoluble nuclear envelope skeletons showing only residual pore complex structures, with some interconnecting filament material, and one major polypeptide; i.e. that of Mr 68,000. This skeletal protein, which is not found in nuclear contents, reveals, on two-dimensional gel electrophoresis, a series of distinct isoelectric variants focusing in the pH range from 6.4 to 6.6. In living oocytes, this protein is continuously synthesized, as demonstrated by incorporation of labelled amino acids, and phosphorylated, A similar prominent skeletal protein has been found in nuclear envelopes of oocytes of other amphibia; however, slight but significant differences in electrophoretic mobility can be noted between different amphibian species.For comparison, nucleocortical lamina structures containing few pore complexes have been isolated, using similar extraction procedures, from various somatic cells of X. laevis, including erythrocytes. Laminae from these cells contain two major polypeptides, one (LI) of Mr 72,000 focusing at approximately pH 5.35 and another (LII) of Mr 69,000 focusing in several variants between pH 6.20 and 6.35. Similarly extracted “pore complex-lamina” fractions from rat liver contain a polypeptide of similar size and electrical charge as protein LI from Xenopus and, in addition, two other polypeptides (Mr values: 74,000 and 62,000) both focusing between pH 6.6 and 6.9.It is concluded that the pore complex-lamina structure of the oocyte nucleus is assembled by only one major protein of Mr 68,000. The results also show that the protein composition of this insoluble nucleocortical structure can be different in different cells of the same organism. The compositional differences of these nuclear envelope skeletons are discussed in relation to the relative proportions of pore complex and interporous (lamina) material in the nuclear envelopes of the specific cells. It is suggested that the Mr 68,000 protein predominant in oocyte nuclear envelopes contributes, as an architectural component, to the formation of the highly organized nuclear pore complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号