首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because retrotransposons are the major component of plant genomes, analysis of the target site selection of retrotransposons is important for understanding the structure and evolution of plant genomes. Here, we examined the target site specificity of the rice retrotransposon Tos17, which can be activated by tissue culture. We have produced 47,196 Tos17-induced insertion mutants of rice. This mutant population carries approximately 500,000 insertions. We analyzed >42,000 flanking sequences of newly transposed Tos17 copies from 4316 mutant lines. More than 20,000 unique loci were assigned on the rice genomic sequence. Analysis of these sequences showed that insertion events are three times more frequent in genic regions than in intergenic regions. Consistent with this result, Tos17 was shown to prefer gene-dense regions over centromeric heterochromatin regions. Analysis of insertion target sequences revealed a palindromic consensus sequence, ANGTT-TSD-AACNT, flanking the 5-bp target site duplication. Although insertion targets are distributed throughout the chromosomes, they tend to cluster, and 76% of the clusters are located in genic regions. The mechanisms of target site selection by Tos17, the utility of the mutant lines, and the knockout gene database are discussed. --The nucleotide sequence data were uploaded to the DDBJ, EMBL, and GenBank nucleotide sequence databases under accession numbers AG020727 to AG025611 and AG205093 to AG215049.  相似文献   

2.
Contribution of the Tos17 retrotransposon to rice functional genomics   总被引:16,自引:0,他引:16  
The ongoing international efforts of the Rice Genomic Sequencing Project have already generated a large amount of sequence data. The next important challenge will be to construct saturation mutant lines for the functional analysis of all of the genes revealed by this effort in the context of the rice plant as a whole. Recently, the endogenous retrotransposon Tos17 has been shown to be an efficient insertional mutagen. Considering the ease of mutagenesis with Tos17 and its multiple-copy nature, saturation mutagenesis with this retrotransposon should be feasible in rice. Ongoing reverse-genetics studies, such as the PCR-screening of mutants and cataloguing of mutants by sequencing Tos17-insertion sites, as well as traditional forward-genetics studies, have clearly demonstrated that the Tos17 system can significantly contribute to the functional genomics of rice.  相似文献   

3.
The rice retrotransposon Tos17 is highly activated by tissue culture. To evaluate the impact of transposition of Tos17 on the rice genome and examine its utility for insertional mutagenesis, more than 100 sequences flanking newly transposed Tos17 copies were characterised. The 5-bp target-site duplications flanking Tos17 did not show any consensus sequence, and preferred nucleotides, A/T and G/C, were only found at the second and third nucleotides from both ends of the target site duplications, respectively, indicating that Tos17 has relatively low target-site specificity at the nucleotide sequence level. Integration targets were widely distributed over the chromosomes; however, preferential integration into the sucrose synthase 2 gene and into Tos17 itself was demonstrated by PCR screening using pooled DNA prepared from the mutant population. Hybridisation studies indicated that Tos17 preferentially integrates into low-copy-number regions of the genome. In agreement with this result, about 30% of flanking sequences examined showed significant homology to known genes. Taken together, these results show that Tos17 can have a significant impact on the rice genome and can be used as a tool for efficient insertional mutagenesis.  相似文献   

4.
Using transfer DNA (T-DNA) with functions of gene trap and gene knockout and activation tagging, a mutant population containing 55,000 lines was generated. Approximately 81% of this population carries 1–2 T-DNA copies per line, and the retrotransposon Tos17 was mostly inactive in this population during tissue culture. A total of 11,992 flanking sequence tags (FSTs) have been obtained and assigned to the rice genome. T-DNA was preferentially (∼80%) integrated into genic regions. A total of 19,000 FSTs pooled from this and another T-DNA tagged population were analyzed and compared with 18,000 FSTs from a Tos17 tagged population. There was difference in preference for integrations into genic, coding, and flanking regions, as well as repetitive sequences and centromeric regions, between T-DNA and Tos17; however, T-DNA integration was more evenly distributed in the rice genome than Tos17. Our T-DNA contains an enhancer octamer next to the left border, expression of genes within genetics distances of 12.5 kb was enhanced. For example, the normal height of a severe dwarf mutant, with its gibberellin 2-oxidase (GA2ox) gene being activated by T-DNA, was restored upon GA treatment, indicating GA2ox was one of the key enzymes regulating the endogenous level of GA. Our T-DNA also contains a promoterless GUS gene next to the right border. GUS activity screening facilitated identification of genes responsive to various stresses and those regulated temporally and spatially in large scale with high frequency. Our mutant population offers a highly valuable resource for high throughput rice functional analyses using both forward and reverse genetic approaches. Electronic Supplementary Material Supplementary material is available in the online version of this article at and is accessible for authorized users. Yue-Ie Hsing, Chyr-Guan Chern, and Ming-Jen Fan have contributed equally.  相似文献   

5.
6.
Isolation and characterization of rice phytochrome A mutants   总被引:19,自引:0,他引:19       下载免费PDF全文
To elucidate phytochrome A (phyA) function in rice, we screened a large population of retrotransposon (Tos17) insertional mutants by polymerase chain reaction and isolated three independent phyA mutant lines. Sequencing of the Tos17 insertion sites confirmed that the Tos17s interrupted exons of PHYA genes in these mutant lines. Moreover, the phyA polypeptides were not immunochemically detectable in these phyA mutants. The seedlings of phyA mutants grown in continuous far-red light showed essentially the same phenotype as dark-grown seedlings, indicating the insensitivity of phyA mutants to far-red light. The etiolated seedlings of phyA mutants also were insensitive to a pulse of far-red light or very low fluence red light. In contrast, phyA mutants were morphologically indistinguishable from wild type under continuous red light. Therefore, rice phyA controls photomorphogenesis in two distinct modes of photoperception--far-red light-dependent high irradiance response and very low fluence response--and such function seems to be unique and restricted to the deetiolation process. Interestingly, continuous far-red light induced the expression of CAB and RBCS genes in rice phyA seedlings, suggesting the existence of a photoreceptor(s) other than phyA that can perceive continuous far-red light in the etiolated seedlings.  相似文献   

7.
8.
Rice dwarf virus (RDV) is a serious viral pest that is transmitted to rice plants ( Oryza sativa L.) by leafhoppers and causes a dwarfism in infected plants. To identify host factors involved in the multiplication of RDV, we screened Tos17 insertion mutant lines of rice for mutants with reduced susceptibility to RDV. One mutant, designated rim1-1 , did not show typical disease symptoms upon infection with RDV. The accumulation of RDV capsid proteins was also drastically reduced in inoculated rim1-1 mutant plants. Co-segregation and complementation analyses revealed that the rim1-1 mutation had been caused by insertion of Tos17 in an intron of a novel NAC gene. The rim1-1 mutant remained susceptible to the two other viruses tested, one of which is also transmitted by leafhoppers, suggesting that the multiplication rather than transmission of RDV is specifically impaired in this mutant. We propose that RIM1 functions as a host factor that is required for multiplication of RDV in rice.  相似文献   

9.
We have previously generated a large pool of T-DNA insertional lines in rice. In this study, we screened those T-DNA pools for rice mutants that had defective chlorophylls. Among the 1,995 lines examined in the T2 generation, 189 showed a chlorophyll-deficient phenotype that segregated as a single recessive locus. Among the mutants, 10 lines were beta-glucuronidase (GUS)-positive in the leaves. Line 9-07117 has a T-DNA insertion into the gene that is highly homologous to XANTHA-F in barley and CHLH in ARABIDOPSIS: This OsCHLH gene encodes the largest subunit of the rice Mg-chelatase, a key enzyme in the chlorophyll branch of the tetrapyrrole biosynthetic pathway. In the T2 and T3 generations, the chlorina mutant phenotypes are co-segregated with the T-DNA. We have identified two additional chlorina mutants that have a Tos17 insertion in the OsCHLH gene. Those phenotypes were co-segregated with Tos17 in the progeny. GUS assays and RNA blot analysis showed that expression of the OsCHLH gene is light inducible, while TEM analysis revealed that the thylakoid membrane of the mutant chloroplasts is underdeveloped. The chlorophyll content was very low in the OschlH mutants. This is the first report that T-DNA insertional mutagenesis can be used for functional analysis of rice genes.  相似文献   

10.
Retrotransposons of rice: their regulation and use for genome analysis   总被引:19,自引:0,他引:19  
  相似文献   

11.
12.
Han FP  Liu ZL  Tan M  Hao S  Fedak G  Liu B 《Hereditas》2004,141(3):243-251
Tos17 is a copia-like endogenous retrotransposon of rice, which can be activated by various stresses such as tissue culture and alien DNA introgression. To confirm element mobilization by introgression and to study possible structural and epigenetic effects of Tos17 insertion on its target sequences, we isolated all flanking regions of Tos17 in an introgressed rice line (Tong35) that contains minute amount of genomic DNA from wild rice (Zizania latifolia). It was found that there has been apparent but limited mobilization of Tos17 in this introgression line, as being reflected by increased but stable copy number of the element in progeny of the line. Three of the five activated copies of the element have transposed into genes. Based on sequence analysis and Southern blot hybridization with several double-enzyme digests, no structural change in Tos17 could be inferred in the introgression line. Cytosine methylation status at all seven CCGG sites within Tos17 was also identical between the introgression line and its rice parent (Matsumae)-all sites being heavily methylated. In contrast, changes in structure and cytosine methylation patterns were detected in one of the three low-copy genomic regions that flank newly transposed Tos17, and all changes are stably inherited through selfed generations.  相似文献   

13.
对从日本获得的水稻Tos17插入突变基因进行了鉴定,并通过PCR技术对其插入位点和纯合体进行了分析和筛选。结果表明,Tos17插入在序列号为DP000086的基因,在此基因反向互补序列的1579bp处,在mRNA序列的第5个外显子区域,是水稻的一个叶绿素a氧化酶基因,而且此基因在单一的铵营养下表达减弱,氮饥饿条件下表达增强。利用Tos17未端和插入位点上下游设计引物进行PCR反应,鉴定到3株纯合突变体株,为进一步研究其功能奠定了基础。  相似文献   

14.
15.
16.
17.
18.
We report here the molecular and phenotypic features of a library of 31,562 insertion lines generated in the model japonica cultivar Nipponbare of rice (Oryza sativa L.), called Oryza Tag Line (OTL). Sixteen thousand eight hundred and fourteen T-DNA and 12,410 Tos17 discrete insertion sites have been characterized in these lines. We estimate that 8686 predicted gene intervals--i.e. one-fourth to one-fifth of the estimated rice nontransposable element gene complement--are interrupted by sequence-indexed T-DNA (6563 genes) and/or Tos17 (2755 genes) inserts. Six hundred and forty-three genes are interrupted by both T-DNA and Tos17 inserts. High quality of the sequence indexation of the T2 seed samples was ascertained by several approaches. Field evaluation under agronomic conditions of 27,832 OTL has revealed that 18.2% exhibit at least one morphophysiological alteration in the T1 progeny plants. Screening 10,000 lines for altered response to inoculation by the fungal pathogen Magnaporthe oryzae allowed to observe 71 lines (0.7%) developing spontaneous lesions simulating disease mutants and 43 lines (0.4%) exhibiting an enhanced disease resistance or susceptibility. We show here that at least 3.5% (four of 114) of these alterations are tagged by the mutagens. The presence of allelic series of sequence-indexed mutations in a gene among OTL that exhibit a convergent phenotype clearly increases the chance of establishing a linkage between alterations and inserts. This convergence approach is illustrated by the identification of the rice ortholog of AtPHO2, the disruption of which causes a lesion-mimic phenotype owing to an over-accumulation of phosphate, in nine lines bearing allelic insertions.  相似文献   

19.

Key message

We show for the first time that intraspecific crossing may impact mobility of the prominent endogenous retrotransposon Tos17 under tissue culture conditions in rice.

Abstract

Tos17, an endogenous copia retrotransposon of rice, is transpositionally active in tissue culture. To study whether there exists fundamental genotypic difference in the tissue culture-induced mobility of Tos17, and if so, whether the difference is under genetic and/or epigenetic control, we conducted this investigation. We show that dramatic difference in tissue culture-induced Tos17 mobility exists among different rice pure-line cultivars sharing the same maternal parent: of the three lines studied that harbor Tos17, two showed mobilization of Tos17, which accrued in proportion to subculture duration, while the third line showed total quiescence (immobility) of the element and the fourth line did not contain the element. In reciprocal F1 hybrids between Tos17-mobile and -immobile (or absence) parental lines, immobility was dominant over mobility. In reciprocal F1 hybrids between both Tos17-mobile parental lines, an additive or synergistic effect on mobility of the element was noticed. In both types of reciprocal F1 hybrids, clear difference in the extent of Tos17 mobility was noted between crossing directions. Given that all lines share the same maternal parent, this observation indicates the existence of epigenetic parent-of-origin effect. We conclude that the tissue culture-induced mobility of Tos17 in rice is under complex genetic and epigenetic control, which can be either enhanced or repressed by intraspecific genetic crossing.  相似文献   

20.
Leafy Cotyledon Mutants of Arabidopsis   总被引:11,自引:1,他引:10       下载免费PDF全文
We have previously described a homeotic leafy cotyledon (lec) mutant of Arabidopsis that exhibits striking defects in embryonic maturation and produces viviparous embryos with cotyledons that are partially transformed into leaves. In this study, we present further details on the developmental anatomy of mutant embryos, characterize their response to abscisic acid (ABA) in culture, describe other mutants with related phenotypes, and summarize studies with double mutants. Our results indicate that immature embryos precociously enter a germination pathway after the torpedo stage of development and then acquire characteristics normally restricted to vegetative parts of the plant. In contrast to other viviparous mutants of maize (vp1) and Arabidopsis (abi3) that produce ABA-insensitive embryos, immature lec embryos are sensitive to ABA in culture. ABA is therefore necessary but not sufficient for embryonic maturation in Arabidopsis. Three other mutants that produce trichomes on cotyledons following precocious germination in culture are described. One mutant is allelic to lec1, another is a fusca mutant (fus3), and the third defines a new locus (lec2). Mutant embryos differ in morphology, desiccation tolerance, pattern of anthocyanin accumulation, presence of storage materials, size and frequency of trichomes on cotyledons, and timing of precocious germination in culture. The leafy cotyledon phenotype has therefore allowed the identification of an important network of regulatory genes with overlapping functions during embryonic maturation in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号