首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
食源性致病菌感染是引起食源性疾病的首要因素,严重影响人类健康。炎症小体通过识别受体感知入侵宿主的危险信号进而组装形成多聚蛋白复合物,从而诱导炎症反应,是先天免疫系统中识别食源性病原菌感染和清除病原体的重要防线。NLRP3炎症小体是位于胞内的炎症反应平台,可以感知多种病原微生物的侵袭,在先天性免疫反应中起着至关重要的作用。食源性致病菌感染常引起NLRP3炎症小体的异常激活,介导多种炎症性疾病的发生和发展,因此,许多抗炎研究中常常以NLRP3炎症小体作为靶点。本文总结了食源性致病菌及其代谢产物激活NLRP3炎症小体的分子机制,以及天然产物和膳食功能物质抑制NLRP3炎症小体激活的机理,为治疗炎症性疾病、开发缓解致病菌诱导的炎症反应的功能化合物提供新的思路。  相似文献   

2.
3.
中性粒细胞是抵御病原体入侵机体的第一道防线,通过趋化和吞噬作用使病原体失活,从而进行免疫防御,杀灭病原体。研究证实,中性粒细胞通过吞噬病原体、分泌抗微生物蛋白颗粒来杀灭病原微生物。2004年Brinkmann发现了一种中性粒细胞新型抗感染机制,即中性粒细胞经病原体活化刺激后释放中性粒细胞胞外诱捕网(neutrophil extracellular trap,NET)至细胞外。NET是由双链DNA染色质和镶嵌在染色质上的抗菌蛋白构成的纤维网格状结构,通过网罗、捕获而杀灭病原体。诸多研究表明,NET在炎症相关疾病中起重要作用,其生成和降解会影响急慢性炎性疾病的病理过程。本文主要从NET的特征、产生机制、抗菌作用及其在炎性相关疾病中的作用等方面着手,概述其最新研究进展,为炎性疾病的治疗及其药物开发提供新的思路和方向。  相似文献   

4.
Two of the main challenges that multicellular organisms faced during evolution were to cope with invading microorganisms and eliminate and replace dying cells. Our innate immune system evolved to handle both tasks. Key aspects of innate immunity are the detection of invaders or tissue injury and the activation of inflammation that alarms the system through the action of cytokine and chemokine cascades. While inflammation is essential for host resistance to infections, it is detrimental when produced chronically or in excess and is linked to various diseases, most notably auto-immune diseases, auto-inflammatory disorders, cancer and septic shock. Essential regulators of inflammation are enzymes termed “the inflammatory caspases”. They are activated by cellular sensors of danger signals, the inflammasomes, and subsequently convert pro-inflammatory cytokines into their mature active forms. In addition, they regulate non-conventional protein secretion of alarmins and cytokines, glycolysis and lipid biogenesis, and the execution of an inflammatory form of cell death termed “pyroptosis”. By acting as key regulators of inflammation, energy metabolism and cell death, inflammatory caspases and inflammasomes exert profound influences on innate immunity and infectious and non-infectious inflammatory diseases. Christian R. McIntire and Garabet Yeretssian have contributed equally to this review.  相似文献   

5.
The innate immune system provides first-line defences in response to invading microorganisms and endogenous danger signals by triggering robust inflammatory and antimicrobial responses. However, innate immune sensing of commensal microorganisms in the intestinal tract does not lead to chronic intestinal inflammation in healthy individuals, reflecting the intricacy of the regulatory mechanisms that tame the inflammatory response in the gut. Recent findings suggest that innate immune responses to commensal microorganisms, although once considered to be harmful, are necessary for intestinal homeostasis and immune tolerance. This Review discusses recent findings that identify a crucial role for innate immune effector molecules in protection against colitis and colitis-associated colorectal cancer and the therapeutic implications that ensue.  相似文献   

6.
Sensing and responding to pathogens and tissue damage is a core mechanism of innate immune host defense, and inflammasomes represent a central cytosolic pattern recognition receptor pathway leading to the generation of the pro-inflammatory cytokines interleukin-1β and interleukin-18 and pyroptotic cell death that causes the subsequent release of danger signals to propagate and perpetuate inflammatory responses. While inflammasome activation is essential for host defense, deregulated inflammasome responses and excessive release of inflammatory cytokines and danger signals are linked to an increasing spectrum of inflammatory diseases. In this review, we will discuss recent developments in elucidating the role of PYRIN domain-only proteins (POPs) and the related CARD-only proteins (COPs) in regulating inflammasome responses and their impact on inflammatory disease.  相似文献   

7.
8.
Extracellular fibronectin (Fn) can activate pro‐inflammatory pathways and serves as an endogenous danger signalling molecule; thus, it has been suggested as a biomarker for several diseases. In the present study, we found that pathogen‐derived activators of the inflammasomes induce the expression and secretion of Fn in macrophages through a mechanism involving adenosine triphosphate and caspase‐1 activation. We also found that plasma Fn induces caspase‐1 activation and cell death in macrophages, epithelial cells, and fibroblasts. Together, these results indicate that Fn plays a critical role in inflammasome‐activated cells by amplifying caspase‐1 activation and inducing inflammatory cell death.  相似文献   

9.
Recently, the terms "stress mediators" or "danger signals" have come to be used to describe endogenous molecules that can be released in stress situations and activate the innate immune system even in the absence of antigenic stimuli. There is evidence suggesting that extracellular heat shock proteins of 72 kDa (eHsp72), together with noradrenaline (NA), are candidates as danger signals during exercise-induced stress, interacting in the activation of neutrophils. Previous studies have shown that the post-exercise circulating concentration of eHsp72 activates the phagocytic process of neutrophils with the participation of toll-like receptor 2, but that other receptors must also be involved. The present investigation evaluates the role of adrenoreceptors in the activation of the chemotaxis, phagocytosis, and fungicidal capacity of neutrophils by the post-exercise circulating concentration of eHsp72. The results showed that intact α- and β-adrenoreceptors are necessary for the stimulation of all stages of the phagocytic process by eHsp72. Also, eHsp72 increased the intracellular levels of cAMP, suggesting that it is an "intracellular danger signal" during stress-induced activation of neutrophils mediated by extracellular heat shock proteins. These results can contribute to better understanding the mechanisms involved in the regulation of the innate immune response mediated by "danger signals" during exercise, and probably during other stress situations.  相似文献   

10.
High-mobility group box 1 (HMGB1) protein first made headlines 40 years ago as a non-histone nuclear protein that regulates gene expression. Not so long ago, it was also shown that HMGB1 has an additional surprising function. When released into the extracellular milieu, HMGB1 triggers an inflammatory response by serving as an endogenous danger signal. The pro-inflammatory role of HMGB1 is now well-established and has been associated with several diseases, including sepsis, rheumatoid arthritis, and atherosclerosis. Yet very little is known about its role in obesity, wherein adipose tissue is typified by a persistent, smoldering inflammatory response instigated by high macrophage infiltrate that potentiates the risk of obesity-associated comorbidities. This mini-review focuses on the putative causal relationship between HMGB1 and macrophage pro-inflammatory activation in pathologically altered adipose tissue associated with obesity.  相似文献   

11.
After the discovery of Toll-like receptors (TLRs), innate immune mechanisms came back in the focus of scientific research. With more and more mechanisms of TLR biology known, it has become clear that these and also other innate immune receptors are not only of crucial importance in the immune response to invading pathogens, but also play a role in the homeostasis of commensal flora and in the response to stress and danger signals. In this respect, increasing evidence is found that inappropriate quantity or quality of TLR ligands or aberrant response to TLR activation plays a role in a variety of chronic inflammatory diseases. In this review, an overview of the currently known TLRs and their signaling pathways is given and reports about their expression and activation in chronic inflammatory diseases are recapitulated.  相似文献   

12.
13.
《FEBS letters》2014,588(8):1416-1422
Extracellular ATP is an important signaling molecule throughout the inflammatory cascade, serving as a danger signal that causes activation of the inflammasome, enhancement of immune cell infiltration, and fine-tuning of several signaling cascades including those important for the resolution of inflammation. Recent studies demonstrated that ATP can be released from cells in a controlled manner through pannexin (Panx) channels. Panx1-mediated ATP release is involved in inflammasome activation and neutrophil/macrophage chemotaxis, activation of T cells, and a role for Panx1 in inducing and propagating inflammation has been demonstrated in various organs, including lung and the central and peripheral nervous system. The recognition and clearance of dying cells and debris from focal points of inflammation is critical in the resolution of inflammation, and Panx1-mediated ATP release from dying cells has been shown to recruit phagocytes. Moreover, extracellular ATP can be broken down by ectonucleotidases into ADP, AMP, and adenosine, which is critical in the resolution of inflammation. Together, Panx1, ATP, purinergic receptors, and ectonucleotidases contribute to important feedback loops during the inflammatory response, and thus represent promising candidates for new therapies.  相似文献   

14.
The inflammasome: first line of the immune response to cell stress   总被引:18,自引:0,他引:18  
Ogura Y  Sutterwala FS  Flavell RA 《Cell》2006,126(4):659-662
The NALP3-inflammasome is a protein complex that stimulates caspase-1 activation to promote the processing and secretion of proinflammatory cytokines. Recent work indicates that the NALP3-inflammasome can be activated by endogenous "danger signals" as well as compounds associated with pathogens (Kanneganti et al., 2006; Mariathasan et al., 2006, Martinon et al., 2006; Sutterwala et al., 2006). Here, we discuss new insights into the regulation of caspase-1 activity in the inflammatory response.  相似文献   

15.
Post-ischemic inflammation is an essential step in the progression of brain ischemia-reperfusion injury. However, the mechanism that activates infiltrating macrophages in the ischemic brain remains to be clarified. Here we demonstrate that peroxiredoxin (Prx) family proteins released extracellularly from necrotic brain cells induce expression of inflammatory cytokines including interleukin-23 in macrophages through activation of Toll-like receptor 2 (TLR2) and TLR4, thereby promoting neural cell death, even though intracellular Prxs have been shown to be neuroprotective. The extracellular release of Prxs in the ischemic core occurred 12 h after stroke onset, and neutralization of extracellular Prxs with antibodies suppressed inflammatory cytokine expression and infarct volume growth. In contrast, high mobility group box 1 (HMGB1), a well-known damage-associated molecular pattern molecule, was released before Prx and had a limited role in post-ischemic macrophage activation. We thus propose that extracellular Prxs are previously unknown danger signals in the ischemic brain and that its blocking agents are potent neuroprotective tools.  相似文献   

16.
Collectins are a family of collagenous calcium-dependent defense lectins in animals. Their polypeptide chains consist of four regions: a cysteine-rich N-terminal domain, a collagen-like region, an alpha-helical coiled-coil neck domain and a C-terminal lectin or carbohydrate-recognition domain. These polypeptide chains form trimers that may assemble into larger oligomers. The best studied family members are the mannan-binding lectin, which is secreted into the blood by the liver, and the surfactant proteins A and D, which are secreted into the pulmonary alveolar and airway lining fluid. The collectins represent an important group of pattern recognition molecules, which bind to oligosaccharide structures and/or lipid moities on the surface of microorganisms. They bind preferentially to monosaccharide units of the mannose type, which present two vicinal hydroxyl groups in an equatorial position. High-affinity interactions between collectins and microorganisms depend, on the one hand, on the high density of the carbohydrate ligands on the microbial surface, and on the other, on the degree of oligomerization of the collectin. Apart from binding to microorganisms, the collectins can interact with receptors on host cells. Binding of collectins to microorganisms may facilitate microbial clearance through aggregation, complement activation, opsonization and activation of phagocytosis, and inhibition of microbial growth. In addition, the collectins can modulate inflammatory and allergic responses, affect apoptotic cell clearance and modulate the adaptive immune system.  相似文献   

17.
Fusobacterium nucleatum is an invasive anaerobic bacterium that is associated with periodontal disease. Previous studies have focused on virulence factors produced by F. nucleatum, but early recognition of the pathogen by the immune system remains poorly understood. Although an inflammasome in gingival epithelial cells (GECs) can be stimulated by danger‐associated molecular patterns (DAMPs) (also known as danger signals) such as ATP, inflammasome activation by this periodontal pathogen has yet to be described in these cells. This study therefore examines the effects of F. nucleatum infection on pro‐inflammatory cytokine expression and inflammasome activation in GECs. Our results indicate that infection induces translocation of NF‐κB into the nucleus, resulting in cytokine gene expression. In addition, infection activates the NLRP3 inflammasome, which in turn activates caspase‐1 and stimulates secretion of mature IL‐1β. Unlike other pathogens studied until now, F. nucleatum activates the inflammasome in GECs in the absence of exogenous DAMPs such as ATP. Finally, infection promotes release of other DAMPs that mediate inflammation, such as high‐mobility group box 1 protein and apoptosis‐associated speck‐like protein, with a similar time‐course as caspase‐1 activation. Thus, F. nucleatum expresses the pathogen‐associated molecular patterns necessary to activate NF‐κB and also provides an endogenous DAMP to stimulate the inflammasome and further amplify inflammation through secretion of secondary DAMPs.  相似文献   

18.
Rapid changes in cell volume characterize macrophage activation, but the role of water channels in inflammation remains unclear. We show here that, in vitro, aquaporin (AQP) blockade or deficiency results in reduced IL-1β release by macrophages activated with a variety of NLRP3 activators. Inhibition of AQP specifically during the regulatory volume decrease process is sufficient to limit IL-1β release by macrophages through the NLRP3 inflammasome axis. The immune-related activity of AQP was confirmed in vivo in a model of acute lung inflammation induced by crystals. AQP1 deficiency is associated with a marked reduction of both lung IL-1β release and neutrophilic inflammation. We conclude that AQP-mediated water transport in macrophages constitutes a general danger signal required for NLRP3-related inflammation. Our findings reveal a new function of AQP in the inflammatory process and suggest a novel therapeutic target for anti-inflammatory therapy.  相似文献   

19.
20.
Dendritic cells at the end of the millennium.   总被引:10,自引:0,他引:10  
We have recently proposed a dual role for dendritic cells (DC) in the amplification of innate immune responses and in the activation of adaptive immune responses. The DC are localized along the major routes of entry of micro-organisms, where they perform a sentinel function for incoming pathogens. Soon after interaction with appropriate stimuli, DC undergo a coordinated process of maturation and respond to danger signals by re- programming their functions. The DC first regulate leucocyte recruitment at the site of inflammation, through the production of chemokines, inflammatory cytokines and interferons, and then they acquire migratory properties and undergo a rapid switch in chemokine receptor expression. This allows them to leave the inflamed tissue and to reach the lymph node T cell area. During this migration, DC complete their maturation process and acquire the ability to prime T cell responses. Thus, DC bridge innate and adaptive immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号