首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

We recently identified neurons in the cerebral cortex that become activated during sleep episodes with high slow-wave activity (SWA). The distinctive properties of these neurons are the ability to produce nitric oxide and their long-range projections within the cortex. In this review, we discuss how these characteristics of sleep-active cells could be relevant to SWA production in the cortex. We also discuss possible models of the role of nNOS cells in SWA production.

  相似文献   

2.
3.
The cytoarchitectural simplicity of the cerebral cortex makes it an attractive system to study central nervous system (CNS) histogenesis—the process whereby diverse cells are generated in the right numbers at the appropriate place and time. Recently, multipotent stem cells have been implicated in this process, as progenitor cells for diverse types of cortical neurons and glia. Continuous analysis of stem cell clone development reveals stereotyped division patterns within their lineage trees, highly reminiscent of neural lineage trees in arthropods and Caenorhabditis elegans. Given that these division patterns play a critical part in generating diverse neural types in invertebrates, we speculate that they play a similar role in the cortex. Because stereotyped lineage trees can be observed from cells growing at clonal density, cell-intrinsic factors are likely to have a key role in stem cell behavior. Cortical stem cells also respond to environmental signals to alter the types of cells they generate, providing the means for feedback regulation on the germinal zone. Evidence is accumulating that cortical stem cells, influenced by intrinsic programs and environmental signals, actually change with development—for example, by reducing the number and types of neurons they produce. Age-related changes in the stem cell population may have a critical role in orchestrating development; whether these cells truly self-renew is a point of discussion. In summary, we propose that cortical stem cells are the focus of regulatory mechanisms central to the development of the cortical cytoarchitecture. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 162–174, 1998  相似文献   

4.
5.
6.
By analogy of defensive conditioned reflex formation in rats using a cytochemical method, dependency of localization and concentration of the product of ATP-ase activity on neuronal and synaptic functional activity has been demonstrated. It corresponds to the notion that only a part of the cortical cells are simultaneously at the state of structural-functional activity. The experimental data demonstrate that the CNS excitation in the animals during the process of learning is connected with increasing ATP-ase activity in ultrastructures of the nucleolus, pericaryon and synapses of some neurons participating in the formation of trace processes in the brain.  相似文献   

7.
A method of recording slow ROSP's changes of the brain in chronic animals was used. It has been shown that wakefulness was accompanied by quasisinusoidal oscillations of ROSP (periods--several seconds). During slow sleep, oscillations of ROSP became more complicated and their periods were longer. It is suggested that transitions from sleep to wakefulness and vice versa are connected with removal of maximums of oxidative metabolism tension between biochemical systems characterized by different rhythms of self-regulation. Rhythmic oscillations of ROSP reveal the possibility of separate functional system of the ROSP of the brain cortex to synchronize their oscillations in the brain tissue (biochemical synergism).  相似文献   

8.
9.
10.
11.
12.
13.
Effect of nicotinamide on epileptic activity in the cerebral cortex   总被引:1,自引:0,他引:1  
The experiments on cats showed that intravenous administration of nicotinamide suppresses the epileptic activity in a solitary epileptic focus as well as in the complex of epileptic foci produced by strychnine application to various cortical zones under the influence of the most powerful focus that plays the role of a determinant. After the intravenous injection of nicotinamide (50-70 mg/kg) the complex was destabilized and broken down. The epileptic activity in the dependent foci of the complex disappeared first in the more remote from the determinant focus and then in the nearer one. The determinant focus was the last to disappear. The inhibitory effect of nicotinamide is associated with antiepileptic activity. Nicotinamide is suggested to be one of the endogenous drugs which may suppress brain hyperactivity and activate the antiepileptogenic system.  相似文献   

14.
Using light and electron microscopy, we have observed the presence of rays containing medullary tissue extending across the cortex of rat adrenal glands. Within these rays chromaffin cells, as well as collagen and nerve fibers, were present. It is suggested that these endocrine cells may have a paracrine function within the cortex, possibly via their secretory product.  相似文献   

15.
Kis B  Chen L  Ueta Y  Busija DW 《Peptides》2006,27(1):211-222
A unique feature of cerebral endothelial cells (CECs) is the formation of the blood-brain barrier (BBB), which contributes to the stability of the brain microenvironment. CECs are capable of producing several substances mediating endothelium-dependent vasorelaxation or vasoconstriction, regulating BBB permeability, and participating in the regulation of cell-cell interactions during inflammatory and immunological processes. The chemical nature of these mediators produced by CECs ranges from gaseous anorganic molecules (e.g. nitric oxide) through lipid mediators (e.g. prostaglandins) to peptides. Peptide mediators are a large and diverse family of bioactive molecules which can elicit multiple effects on cerebral endothelial functions. In this review, we summarize current knowledge of peptide mediators produced by CECs, such as adrenomedullin, angiotensin, endothelin and several others and their role in the regulation of BBB functions.  相似文献   

16.
17.
Anatomical connectivity is a prerequisite for cooperative interactions between cortical areas, but it has yet to be demonstrated that association fibre networks determine the macroscopical flow of activity in the cerebral cortex. To test this notion, we constructed a large-scale model of cortical areas whose interconnections were based on published anatomical data from tracing studies. Using this model we simulated the propagation of activity in response to activation of individual cortical areas and compared the resulting topographic activation patterns to electrophysiological observations on the global spread of epileptic activity following intracortical stimulation. Here we show that a neural network with connectivity derived from experimental data reproduces cortical propagation of activity significantly better than networks with different types of neighbourhood-based connectivity or random connections. Our results indicate that association fibres and their relative connection strengths are useful predictors of global topographic activation patterns in the cerebral cortex. This global structure-function relationship may open a door to explicit interpretation of cortical activation data in terms of underlying anatomical connectivity.  相似文献   

18.
19.
Involvement of the sphingomyelin cascade in Interleukin 1 beta (IL-1) signal transduction pathway in membrane fraction P2 of the murine brain cortex, was found. A key role of the membrane enzyme neutral sphingomyelinase (nSMase) in triggering the sphingomyelin pathway for IL-1 beta, was confirmed. The IL-1 beta was shown to activate in a dose-dependent manner nSMase in the P2 fraction of the brain cortex. Employment of both brain cortex membranes from the mice deficient in the type I IL-1 receptor and of IL-1 receptor antagonist made it possible to obtain evidence on the necessity of the IL-1 beta binding to the type I IL-1 receptor for the nSMase activation. It appears that the IL-1 beta effects on the CNS are realized via IL-1 receptor type I and activation of the nSMase as an initiating enzyme of the sphingomyelin cascade.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号