首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cases of coexisting sexual and asexual relatives are puzzling, as evolutionary theory predicts that competition for the same ecological niches should lead to the exclusion of one or the other population. In the cyclically parthenogenetic aphid, Rhopalosiphum padi, sexual and facultative asexual lineages are admixed in space at the time of sexual reproduction. We investigated how the interaction of reproductive mode and environment can lead to temporal niche differentiation. We demonstrated theoretically that differential sensitivity of sexual and facultatively asexual aphids to an environmental parameter (mating host suitability) shapes the two strategies: whereas the sexual lineages switch earlier to the production of sexual forms, the facultative asexual lineages delay and spread out their investment in sexual reproduction. This predicted pattern of niche specialization is in agreement with the temporal structure revealed in natura by demographic and genetic data. We propose that partial loss of sex by one pool of aphids and subsequent reduction in gene flow between lineages may favour temporal specialization through disruptive selection.  相似文献   

2.
Organisms that reproduce by sperm-dependent parthenogenesis are asexual clones that require sperm of a sexual host to initiate egg production, without the genome of the sperm contributing genetic information to the zygote. Although sperm-dependent parthenogenesis has some of the disadvantages of sex (requiring a mate) without the counterbalancing advantages (mixing of parental genotypes), it appears amongst a wide variety of species. We develop initial models for the density-dependent dynamics of animal populations with sperm-dependent parthenogenesis (pseudogamy or gynogenesis), based on the known biology of the common Enchytraeid worm Lumbricillus lineatus. Its sperm-dependent parthenogenetic populations are reproductive parasites of the hermaphrodite sexual form. Our logistic models reveal two alternative requirements for coexistence at density-dependent equilibria: (i) If the two forms differ in competitive ability, the form with the lower intrinsic birth rate must be compensated by a more than proportionately lower competitive impact from the other, relative to intraspecific competition, (ii) If the two forms differ in their intrinsic capacity to exploit resources, the sperm-dependent parthenogen must be superior in this respect and must have a lower intrinsic birth rate. In general for crowded environments we expect a sperm-dependent parthenogen to compete strongly for limiting resources with the sexual sibling species. Its competitive impact is likely to be weakened by its genetic uniformity, however, and this may suffice to cancel any advantage of higher intrinsic growth rate obtained from reproductive investment only in egg production. We discuss likely thresholds of coexistence for other sperm-dependent parthenogens. The fish Poeciliopsis monacha-lucida likewise obtains an intrinsic growth advantage from reduced investment in male gametes, and so its persistence is likely to depend on it being a poor competitor. The planarian Schmidtea polychroa obtains no such intrinsic benefit because it produces fertile sperm, and its persistence may depend on superior resource exploitation.  相似文献   

3.
Species across the tree of life can switch between asexual and sexual reproduction. In facultatively sexual species, the ability to switch between reproductive modes is often environmentally dependent and subject to local adaptation. However, the ecological and evolutionary factors that influence the maintenance and turnover of polymorphism associated with facultative sex remain unclear. We studied the ecological and evolutionary dynamics of reproductive investment in the facultatively sexual model species, Daphnia pulex. We found that patterns of clonal diversity, but not genetic diversity varied among ponds consistent with the predicted relationship between ephemerality and clonal structure. Reconstruction of a multi-year pedigree demonstrated the coexistence of clones that differ in their investment into male production. Mapping of quantitative variation in male production using lab-generated and field-collected individuals identified multiple putative quantitative trait loci (QTL) underlying this trait, and we identified a plausible candidate gene. The evolutionary history of these QTL suggests that they are relatively young, and male limitation in this system is a rapidly evolving trait. Our work highlights the dynamic nature of the genetic structure and composition of facultative sex across space and time and suggests that quantitative genetic variation in reproductive strategy can undergo rapid evolutionary turnover.  相似文献   

4.
Abstract. Neither conventional niche theory nor current lottery models offer a satisfactory theoretical scope for modelling coexistence of species with disjoint generations. South-African fynbos and Australian kwongan include many species which are killed by, and recruit only after, fire. We propose a density-dependent lottery model which accommodates the unusual demographics of these species. We show that coexistence requires density dependence in recruitment. The result applies to a wider class of populations than the one considered here. It is applied to non-resprouting species in fynbos and kwongan. We show that the lottery assumption of recruitment in proportion to propagules is often satisfied, while the production of such propagules is often density-dependent, and we discuss some evidence of mechanisms whereby this may occur.  相似文献   

5.
Research in community ecology has tended to focus on trophic interactions (e.g., predation, resource competition) as driving forces of community dynamics, and sexual interactions have often been overlooked. Here we discuss how sexual interactions can affect community dynamics, especially focusing on frequency-dependent dynamics of horizontal communities (i.e., communities of competing species in a single ecological guild). By combining mechanistic and phenomenological models of competition, we place sexual reproduction into the framework of modern coexistence theory. First, we review how population dynamics of two species competing for two resources can be represented by the Lotka–Volterra competition model as well as frequency dynamics, and how niche differentiation and overlap produce negative and positive frequency-dependence (i.e., stable coexistence and priority effect), respectively. Then, we explore two situations where sexual interactions change the frequency-dependence in community dynamics: (1) reproductive interference, that is, negative interspecific interactions due to incomplete species recognition in mating trials, can promote positive frequency-dependence and (2) density-dependent intraspecific adaptation load, that is, reduced population growth rates due to adaptation to intraspecific sexual (or social) interactions, produces negative frequency-dependence. We show how reproductive interference and density-dependent intraspecific adaptation load can decrease and increase niche differences in the framework of modern coexistence theory, respectively. Finally, we discuss future empirical and theoretical approaches for studying how sexual interactions and related phenomena (e.g., reproductive interference, intraspecific adaptation load, and sexual dimorphism) driven by sexual selection and conflict can affect community dynamics.  相似文献   

6.
Life-history traits may have an important role in promoting species coexistence. However, the complexity of certain life cycles makes it difficult to draw conclusions about the conditions for coexistence or exclusion based on the study of short-term competitive dynamics. Brachionus plicatilis and B. manjavacasare two cryptic rotifer species co-occurring in many lakes on the Iberian Peninsula. They have a complex life cycle in which cyclical parthenogenesis occurs with diapausing stages being the result of sexual reproduction. B. plicatilis and B. manjavacasare identical in morphology and size, their biotic niches are broadly overlapping, and they have similar competitive abilities. However, the species differ in life-history traits involving sexual reproduction and diapause, and respond differently to salinity and temperature. As in the case of certain other species that are extremely similar in morphology, a fluctuating environment are considered to be important for their coexistence. We studied the long-term competitive dynamics of B. plicatilis and B. manjavacas under different salinity regimes (constant and fluctuating). Moreover, we focused on the dynamics of the diapausing egg bank to explore how the outcome of the entire life cycle of these rotifers can work to mediate stable coexistence. We demonstrated that these species do not coexist under constant-salinity environment, as the outcome of competition is affected by the level of salinity—at low salinity, B. plicatilis excluded B. manjavacas, and the opposite outcome occurred at high salinity. Competitive dynamics under fluctuating salinity showed that the dominance of one species over the other also tended to fluctuate. The duration of co-occurrence of these species was favoured by salinity fluctuation and perhaps by the existence of a diapausing egg bank. Stable coexistence was not found in our system, which suggests that other factors or other salinity fluctuation patterns might act as stabilizing processes in the wild.  相似文献   

7.
Sexual reproduction is a mysterious phenomenon. Most animals and plants invest in sexual reproduction, even though it is more costly than asexual reproduction. Theoretical studies suggest that occasional or conditional use of sexual reproduction, involving facultative switching between sexual and asexual reproduction, is the optimal reproductive strategy. However, obligate sexual reproduction is common in nature. Recent studies suggest that the evolution of facultative sexual reproduction is prevented by males that coerce females into sexual fertilization; thus, sexual reproduction has the potential to enforce costs on a given species. Here, the effect of sex on biodiversity is explored by evaluating the reproductive costs arising from sex. Sex provides atypical selection pressure that favors traits that increase fertilization success, even at the expense of population growth rates, that is, sexual selection. The strength of sexual selection depends on the density of a given species. Sexual selection often causes strong negative effects on the population growth rates of species that occur at high density. Conversely, a species that reduces its density is released from this negative effect, and so increases its growth rate. Thus, this negative density-dependent effect on population growth that arises from sexual selection could be used to rescue endangered species from extinction, prevent the overgrowth of common species and promote the coexistence of competitive species. Recent publications on sexual reproduction provide several predictions related to the evolution of reproductive strategies, which is an important step toward integrating evolutionary dynamics, demographic dynamics and community dynamics.  相似文献   

8.
Gaku Takimoto  Kenta Suzuki 《Oikos》2016,125(4):535-540
Mutualism is a fundamental building block of ecological communities and an important driver of biotic evolution. Classic theory suggests that a pairwise two‐species obligate mutualism is fragile, with a large perturbation potentially driving both mutualist populations into extinction. In nature, however, there are many cases of pairwise obligate mutualism. Such pairwise obligate mutualisms are occasionally associated with additional interactions with facultative mutualists. Here, we use a mathematical model to show that when a two‐species obligate mutualism has a single additional link to a third facultative mutualist, the obligate mutualism can become permanently persistent. In the model, a facultative mutualist interacts with one of two inter‐dependent obligate mutualists, and the facultative mutualist enhances the persistence not only of its directly interacting obligate mutualist, but also that of the other obligate mutualist indirectly, enabling the permanent coexistence of the three mutualist species. The effect of the facultative mutualist is strong; it can allow a three‐species permanent coexistence even when two obligate mutualists by themselves are not sustainable (i.e. not locally stable). These results suggest that facultative mutualists can play a pivotal role for the persistence of obligate mutualisms, and contribute to a better understanding on the mechanisms maintaining more complex mutualistic networks of multiple species.  相似文献   

9.
In nature, many insect species are attacked by more than one specialized species of parasitoid. We examine whether parasitoid aggregation among patches containing hosts can promote the coexistence of specialized parasitoids on the same host species. We construct models to analyze the effects of three types of parasitoid aggregation: direct density-dependent, inverse density-dependent, and density-independent aggregation. All three types of aggregation may facilitate coexistence, provided the parasitoid species show behavioral differences that produce different patterns of aggregation. By deriving general conditions of coexistence of parasitoids, we show that all three types of aggregation act to facilitate coexistence in the same way—by increasing the covariance between the distributions of susceptible hosts and the least common parasitoid. Although they act in the same way, in general the effect of density-independent aggregation in facilitating coexistence is greater than either direct or inverse density-dependent aggregation. This suggests that density-independent aggregation may have the greatest potential to facilitate the coexistence of specialize parasitoids using the same host.  相似文献   

10.
Weakly density-dependent effects, characterized by fractional scaling exponents close to one, are rarely studied in the ecological literature. Here, we consider the effect of an additional weakly density-dependent term on a simple competition model. Our investigation reveals that weak density-dependence opens up an “invisible niche”. This niche does not constitute a new mechanism for coexistence, but is a previously unexplored consequence of known mechanisms. In the invisible niche a weaker competitor can survive at very low density. Coexistence thus requires large habitat size. Such niches, if found in nature, would have a direct impact on species-area laws and species-abundance curves and should therefore receive more attention.  相似文献   

11.
At carrying capacity, small advantages in competitive ability can compensate a sexual population for its two-fold disadvantage in growth capacity when facing invasion by asexual mutants. In this paper, we develop a generic analytical model to consider the ecology of a sexual population comprising equal numbers of males and females, competing for shared prey resources with multiple female-only clones. We assume that the clones arise from the sexual population and are distinguished from it only by having narrower resource niches and twice the growth capacity. For sexual populations, at density-dependent carrying capacity, intra-specific competition between clonal individuals prevents them from realizing their two-fold advantage in intrinsic growth. This prediction leads to three novel outcomes: (i) a sexual population can coexist with any number of clones, provided their combined competitive impact remains less than the impact of the clones on each other; (ii) a sexual species can immediately exclude asexual invaders if it is a fast growing and strong competitor of shared resources and also has refuge in an abundant alternative resource; (iii) the rate of accumulation of clones in a sexual population will be slowed by intra and inter-specific competition amongst the clones themselves, in addition to the competitive impact from the original sexual population.  相似文献   

12.
According to environmental-based theories on the maintenance of sexual reproduction, sexual and asexual populations may coexist if they occupy different ecological niches. The aphid Rhopalosiphum padi offers a good opportunity to test this hypothesis since sexual and asexual lineages show local coexistence during a large part of their respective life-cycles. Because these two reproductive variants are morphologically identical but genetically distinct, we first characterized them using genetic markers in populations of R. padi in areas where sexual and asexual lineages may occur in sympatry. We then inferred the natal host plant of sexual and asexual genotypes by analysing stable isotopic ratios and showed that sexual ones mostly originated from C3 Poaceae while asexual ones originated from C3 and C4 plants, although the majority came from C4 Poaceae. These findings indicate that ecological niches of sexual and asexual lineages of R. padi differ, offering a plausible explanation for the local coexistence of the two reproductive modes in this species through habitat specialisation.  相似文献   

13.
We propose a new hypothesis for species coexistence by considering behavioral interactions between individuals. The hypothesis states that repulsive behavior between conspecific males (male–male repulsion) creates space for competing species, which promotes their coexistence. This hypothesis can explain the coexistence of two competing species even when their ecological niches completely overlap in spatially homogeneous environments. In addition, the mechanisms underlying such behavior might play a role in enabling the coexistence of two species immediately after speciation, with little or no niche differentiation, as in the case of cichlid fish communities, for example. Although there is limited evidence supporting this hypothesis, it can nevertheless explain the occurrence of species coexistence and biodiversity, which cannot be explained by previous theories.  相似文献   

14.
We scrutinised the seasonal food-niche utilisation of river dwelling Atlantic salmon parr and alpine bullhead in order to examine potential mechanisms that may facilitate coexistence of species with similar niches. Fish were sampled monthly during the ice-free season, and diet composition and feeding strategy of the two species were compared by analyses of stomach contents. The dietary niches and feeding strategy of salmon parr and bullheads were highly similar both at the individual and population levels, with high within-phenotype contributions to niche width and pronounced generalisation observed during time periods with severe resource limitations. Our findings suggest that competitive coexistence with similar niches may be facilitated by a generalisation of niche width as predicted by optimal foraging theory, rather than the specialised niche width predicted by classic niche theory as a response to interspecific competition. Competitive coexistence may be particularly widespread in spatially and temporally dynamic habitats such as northern lotic systems, which thus may select for generalisation and convergence of ecological niches.  相似文献   

15.
Diapause, a strategy to endure unfavourable conditions (e.g. cold winters) is commonly found in ectothermic organisms and is characterized by an arrest of development and reproduction, a reduction of metabolic rate, and an increased resistance to adversity. Diapause, in addition to adaptations for surviving low winter temperatures, significantly influences phenology, voltinism and ultimately population growth. We review the literature on diapause and overwintering behaviour of two bark beetle species that affect spruce‐dominated forests in the northern hemisphere, and describe and compare how these strategies can influence population dynamics. The European spruce bark beetle Ips typographus (L.) (Coleoptera, Curculionidae) is the most important forest pest of Norway spruce in Europe. It enters an adult reproductive diapause that might be either facultative or obligate. Obligate diapausing beetles are considered strictly univoltine, entering this dormancy type regardless of environmental cues. Facultative diapausing individuals enter diapause induced by photoperiod, modified by temperature, thus being potentially multivoltine. The spruce beetle Dendroctonus rufipennis (Kirby) (Coleoptera: Curculionidae) infests all spruce species in its natural range in North America. A facultative prepupal diapause is averted by relatively warm temperatures, resulting in a univoltine life cycle, whereas cool temperatures induce prepupal diapause leading to a semivoltine cycle. An adult obligate diapause in D. rufipennis could limit bi‐ or multivoltinism. We discuss and compare the influence of diapause and overwinter survival on voltinism and population dynamics of these two species in a changing climate and provide an outlook on future research.  相似文献   

16.
All‐female sperm‐dependent species are particular asexual organisms that must coexist with a closely related sexual host for reproduction. However, demographic advantages of asexual over sexual species that have to produce male individuals could lead both to extinction. The unresolved question of their coexistence still challenges and fascinates evolutionary biologists. As an alternative hypothesis, we propose those asexual organisms are afflicted by a demographic cost analogous to the production of males to prevent exclusion of the host. Previously proposed hypotheses stated that asexual individuals relied on a lower fecundity than sexual females to cope with demographic advantage. In contrast, we propose that both sexual and asexual species display the same number of offspring, but half of asexual individuals imitate the cost of sex by occupying ecological niches but producing no offspring. Simulations of population growth in closed systems under different demographic scenarios revealed that only the presence of nonreproductive individuals in asexual females can result in long‐term coexistence. This hypothesis is supported by the fact that half of the females in some sperm‐dependent organisms did not reproduce clonally.  相似文献   

17.
Sperm‐dependent asexual species must coexist with a sexual species (i.e. a sperm source) to reproduce. The maintenance of this coexistence, and hence the persistence of sperm‐dependent asexual species, may depend on ecological niche separation or preference by males for conspecific (i.e. sexual) mates. We first modified an analytical model to consider both of these mechanisms acting simultaneously on the coexistence of the two species. Our model indicates that a small amount of niche separation between parental species and hybrids can facilitate coexistence by weakening the requirement for male mate preference. We also estimated niche separation empirically in the Chrosomus (formerly Phoxinus) sexual‐asexual system based on diet overlap between sperm‐dependent asexuals and their two sexual host species. Diet overlap between the sexual species was not significant in either lake, whereas the sperm‐dependent asexual had an intermediate niche that overlapped significantly, but somewhat asymmetrically, with both sexual species. These empirical results were then used to parameterize our analytical model to predict the minimum strength of male mate preference required to maintain coexistence in each lake. Some male mate preference is likely required to maintain coexistence in the Chrosomus system, but the minimum required preference depends on the severity of density dependence. Future empirical work on understanding coexistence in sperm‐dependent asexual systems would benefit from taking both niche separation and mate choice into account, and from simultaneous empirical estimates of male mate choice, niche separation, and density dependence.  相似文献   

18.
Many species exhibit dispersal processes with positive density- dependence. We model this behavior using an integrodifference equation where the individual dispersal probability is a monotone increasing function of local density. We investigate how this dispersal probability affects the spreading speed of a single population and its ability to persist in fragmented habitats. We demonstrate that density-dependent dispersal probability can act as a mechanism for coexistence of otherwise non-coexisting competitors. We show that in time-varying habitats, an intermediate dispersal probability will evolve. Analytically, we find that the spreading speed for the integrodifference equation with density-dependent dispersal probability is not linearly determined. Furthermore, the next-generation operator is not compact and, in general, neither order-preserving nor monotonicity-preserving. We give two explicit examples of non-monotone, discontinuous traveling-wave profiles.   相似文献   

19.
The deterministic maintenance of clonal diversity in thelytokous taxa can be seen as a model for understanding how environmental heterogeneity both can stabilize genetic diversity and can allow coexistence of competing species. We here analyze the temporal fluctuations in clonal diversity in the thelytokous Lonchopterid fly, Dipsa bifurcata (Fallén, 1810), at four localities in Sweden over an 8-year period. Estimated fitness values for clones are cyclical, synchronous among populations and correlated with seasonal changes in the environment. Differential winter viability and emergence from overwintering along with differential reproductive rate during the summer appear to be the selective mechanisms by which long-term clonal diversity is maintained. In a companion paper (Tomiuk et al, 2004), we present a model for the maintenance of clonal diversity through the mechanism of differential diapause among clones, utilizing fitness values estimated from the data presented here. In general, our results imply that fluctuating seasonal fitnesses can maintain stable genetic polymorphism within populations, as well as coexistence between closely related competitors, when coupled with differences in diapause phenology.  相似文献   

20.
A species reproductive mode, along with its associated costs and benefits, can play a significant role in its evolution and survival. Facultative sexuality, being able to reproduce both sexually and asexually, has been deemed evolutionary favourable as the benefits of either mode may be fully realized. In fact, many studies have focused on identifying the benefits of sex and/or the forces selecting for increased rates of sex using facultative sexual species. The costs of either mode, however, can also have a profound impact on a population's evolutionary trajectory. Here, we used experimental evolution and fitness assays to investigate the consequences of facultative sexuality in prey adapting to predation. Specifically, we compared the adaptive response of algal prey populations exposed to constant rotifer predation and which had alternating cycles of asexual and sexual reproduction where sexual episodes were either facultative (sexual and asexual progeny simultaneously propagated) or obligate (only sexual progeny propagated). We found that prey populations with facultative sexual episodes reached a lower final relative fitness and suffered a greater trade‐off in traits under selection, that is defence and competitive ability, as compared to prey populations with obligate sexual episodes. Our results suggest that costs associated with sexual reproduction (germination time) and asexual reproduction (selection interference) were amplified in the facultative sexual prey populations, leading to a reduction in the net advantage of sexuality. Additionally, we found evidence that the cost of sex was reduced in the obligate sexual prey populations because increased selection for sex was observed via the spontaneous production of sexual cells. These results show that certain costs associated with facultative sexuality can affect an organism's evolutionary trajectory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号