首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer's disease is characterized by amyloid deposits in the parenchyma and vasculature of the brain. The plaques are mainly composed of amyloid beta (Abeta) peptides ending in residues 40 and 42. Novel longer Abeta peptides were found in brain homogenates of mouse models of Alzheimer's disease and human brain tissue of patients carrying the familial amyloid precursor protein V717F mutation. The biophysical characteristics of these longer Abeta peptides and their role in plaque formation are not understood. We chose to focus our studies on Abeta peptides ending in residues Ile45, Val46 and Ile47 as these peptides were identified in human brain tissue. A combination of circular dichroism and electron microscopy was used to characterize the secondary and tertiary structures of these peptides. All three longer Abeta peptides consisted mainly of a beta-sheet secondary structure. Electron microscopy demonstrated that these beta-structured peptides formed predominantly amorphous aggregates, which convert to amyloid fibres over extended time periods. As these longer peptides may act as seeds for the nucleation of fibrils composed predominantly of shorter amyloid peptides, these interactions were studied. All peptides accelerated the random to beta-structural transitions and fibril formation of Abeta40 and 42.  相似文献   

2.
The full-length mouse recombinant prion protein (23-231 amino acid residues) contains all of its structural elements viz. three alpha-helices and a short two-stranded antiparallel beta-sheet in its C-terminal fragment comprising 121-231 amino acid residues. The incubated mixture of this prion protein fragment and nucleic acid results in the formation of amyloid fibres evidenced from electron microscopy, birefringence and fluorescence of the fibre bound Congo Red and Thioflavin T dyes, respectively. The secondary structure of the amyloid formed in nucleic acid solution is similar to the in vivo isolated prion protein 27-30 amyloid but unlike in it, a hydrophobic milieu is absent in the 121-231 amyloid. Thermal denaturation study demonstrates a partial unfolding of the protein fragment in nucleic acid solution. We propose that nucleic acid catalyses unfolding of prion protein helix 1 followed by a nucleation-dependent polymerisation of the protein to amyloid.  相似文献   

3.
Amyloid fibril formation is associated with several pathologies, including Alzheimer's disease, Parkinson's disease, type II diabetes, and prion diseases. Recently, a relationship between basement membrane components and amyloid deposits has been reported. The basement membrane protein, laminin, may be involved in amyloid-related diseases, since laminin is present in amyloid plaques in Alzheimer's disease and binds to amyloid precursor protein. Recently, we showed that peptide A208 (AASIKVAVSADR), the IKVAV-containing peptide, formed amyloid-like fibrils. We previously identified 60 cell adhesive sequences in laminin-1 using a total of 673 12-mer synthetic peptides. Here, we screened for additional amyloidogenic sequences among 60 cell adhesive peptides derived from laminin-1. We first examined amyloid-like fibril formation by the 60 active peptides with Congo red, a histological dye binding to many amyloid-like proteins. Thirteen peptides were stained with Congo red. Four of the 13 peptides promoted cell attachment and neurite outgrowth like the IKVAV-containing peptide. The four peptides also showed amyloid-like fibril formation in both X-ray diffraction and electron microscopic analyses. The amyloidogenic peptides contain consensus amino acid components, including both basic and acidic amino acids and Ser and Ile residues. These results indicate that at least five laminin-derived peptides can form amyloid-like fibrils. We conclude that the laminin-derived amyloidogenic peptides have the potential to form amyloid-like fibrils in vivo, possibly when laminin-1 is degraded.  相似文献   

4.
One of the major clinical features of Alzheimer's disease is the presence of extracellular amyloid plaques that are associated with glycosaminoglycan-containing proteoglycans. It has been proposed that proteoglycans and glycosaminoglycans facilitate amyloid fibril formation and/or stabilize these aggregates. Characterization of proteoglycan-protein interactions has suggested that basic amino acids in a specific conformation are necessary for glycosaminoglycan binding. Amyloid-beta peptide (Abeta) has a cluster of basic amino acids at the N-terminus (residues 13-16, His-His-Gln-Lys), which are considered critical for glycosaminoglycan interactions. To understand the molecular recognition of glycosaminoglycans by Abeta, we have examined a series of synthetic peptides with systematic alanine substitutions. These include: His13-->Ala, His14-->Ala, Lys16-->Ala, His13His14Lys16-->Ala and Arg5His6-->Ala. Alanine substitutions result in differences in both the secondary and fibrous structure of Abeta1-28 as determined by circular dichroism spectroscopy and electron microscopy. The results demonstrate that the His-His-Gln-Lys region of Abeta, and in particular His13, is an important structural domain, as Ala substitution produces a dysfunctional folding mutant. Interaction of the substituted peptides with heparin and chondroitin sulfate glycosaminoglycans demonstrate that although electrostatic interactions contribute to binding, nonionic interactions such as hydrogen bonding and van der Waals packing play a role in glycosaminoglycan-induced Abeta folding and aggregation.  相似文献   

5.
How life can emerge from non-living matter is one of the fundamental mysteries of the universe. A bottom-up approach to this problem focuses on the potential chemical precursors of life, in particular the nature of the first replicative molecules. Such thinking has led to the currently most popular idea: that an RNA-like molecule played a central role as the first replicative and catalytic molecule. Here, we review an alternative hypothesis that has recently gained experimental support, focusing on the role of amyloidogenic peptides rather than nucleic acids, in what has been by some termed “the amyloid-world” hypothesis. Amyloids are well-ordered peptide aggregates that have a fibrillar morphology due to their underlying structure of a one-dimensional crystal-like array of peptides in a β-strand conformation. While they are notorious for their implication in several neurodegenerative diseases including Alzheimer's disease, amyloids also have many biological functions. In this review, we will elaborate on the following properties of amyloids in relation to their fitness as a prebiotic entity: they can be formed by very short peptides with simple amino acids sequences; as aggregates they are more chemically stable than their isolated component peptides; they can possess diverse catalytic activities; they can form spontaneously during the prebiotic condensation of amino acids; they can act as templates in their own chemical replication; they have a structurally repetitive nature that enables them to interact with other structurally repetitive biopolymers like RNA/DNA and polysaccharides, as well as with structurally repetitive surfaces like amphiphilic membranes and minerals.  相似文献   

6.
Gazit E 《The FEBS journal》2005,272(23):5971-5978
The formation of amyloid fibrils is associated with various human medical disorders of unrelated origin. Recent research indicates that self-assembled amyloid fibrils are also involved in physiological processes in several micro-organisms. Yet, the molecular basis for the recognition and self-assembly processes mediating the formation of such structures from their soluble protein precursors is not fully understood. Short peptide models have provided novel insight into the mechanistic issues of amyloid formation, revealing that very short peptides (as short as a tetrapeptide) contain all the necessary molecular information for forming typical amyloid fibrils. A careful analysis of short peptides has not only facilitated the identification of molecular recognition modules that promote the interaction and self-assembly of fibrils but also revealed that aromatic interactions are important in many cases of amyloid formation. The realization of the role of aromatic moieties in fibril formation is currently being used to develop novel inhibitors that can serve as therapeutic agents to treat amyloid-associated disorders.  相似文献   

7.
Amyloid fibrils in which specific proteins have polymerized into a cross-beta-sheet structure are found in about 20 diseases. In contrast to the close structural similarity of fibrils formed in different amyloid diseases, the structures of the corresponding native proteins differ widely. We show here that peptides as short as 4 residues with the sequences KFFE or KVVE can form amyloid fibrils that are practically identical to fibrils formed in association with disease, as judged by electron microscopy and Congo red staining. In contrast, KLLE or KAAE do not form fibrils. The fibril-forming KFFE and KVVE show partial beta-strand conformation in solution, whereas the non-fibril-forming KLLE and KAAE show random structure only, suggesting that inherent propensity for beta-strand conformation promotes fibril formation. The peptides KFFK or EFFE do not form fibrils on their own but do so in an equimolar mixture. Thus, intermolecular electrostatic interactions, either between charged dipolar peptides or between complementary charges of co-fibrillating peptides favor fibril formation.  相似文献   

8.
The process of amyloid fibril formation by the human calcitonin hormone is associated with medullary thyroid carcinoma. Based on the effect of pH on the fibrillization of human calcitonin, the analysis of conformationally constrained analogues of the hormone, and our suggestion regarding the role of aromatic residues in the process of amyloid fibril formation, we studied the ability of a short aromatic charged peptide fragment of calcitonin (NH(2)-DFNKF-COOH) to form amyloid fibrils. Here, using structural and biophysical analysis, we clearly demonstrate the ability of this short peptide to form well ordered amyloid fibrils. A shorter truncated tetrapeptide, NH(2)-DFNK-COOH, also formed fibrils albeit less ordered than those formed by the pentapeptide. We could not detect amyloid fibril formation by the NH(2)-FNKF-COOH tetrapeptide, the NH(2)-DFN-COOH tripeptide, or the NH(2)-DANKA-COOH phenylalanine to the alanine analogue of the pentapeptide. The formation of amyloid fibrils by rather hydrophilic peptides is quite striking, because it was speculated that hydrophobic interactions might play a key role in amyloid formation. This is the first reported case of fibril formation by a peptide as short as a tetrapeptide and one of very few cases of amyloid formation by pentapeptides. Because the aromatic nature seems to be the only common property of the various very short amyloid-forming peptides, it further supports our hypothesis on the role of aromatic interactions in the process of amyloid fibril formation.  相似文献   

9.
The development of type II diabetes was shown to be associated with the formation of amyloid fibrils consisted of the islet amyloid polypeptide (IAPP or amylin). Recently, a short functional hexapeptide fragment of IAPP (NH(2)-NFGAIL-COOH) was found to form fibrils that are very similar to those formed by the full-length polypeptide. To better understand the specific role of the residues that compose the fragment, we performed a systematic alanine scan of the IAPP "basic amyloidogenic units." Turbidity assay experiments demonstrated that the wild-type peptide and the Asn(1) --> Ala and Gly(3) --> Ala peptides had the highest rate of aggregate formation, whereas the Phe(2) --> Ala peptide did not form any detectable aggregates. Dynamic light-scattering experiments demonstrated that all peptides except the Phe(2) --> Ala form large multimeric structures. Electron microscopy and Congo red staining confirmed that the structures formed by the various peptides are indeed amyloid fibrils. Taken together, the results of our study provide clear experimental evidence for the key role of phenylalanine residue in amyloid formation by IAPP. In contrast, glycine, a residue that was suggested to facilitate amyloid formation in other systems, has only a minor role, if any, in this case. Our results are discussed in the context of the remarkable occurrence of aromatic residues in short functional fragments and potent inhibitors of amyloid-related polypeptides. We hypothesize that pi-pi interactions may play a significant role in the molecular recognition and self-assembly processes that lead to amyloid formation.  相似文献   

10.
The ability of RNA to both replicate and carry out enzymic functions has led to the proposal that an 'RNA-world' preceded the emergence of protein function in pre-biotic evolution. This order of function requires a key transition in which replicating RNA-molecules 'breakout' and recruit protein function. Here I propose a mechanism for the co-evolution of protein and nucleic acids as replicating entities from the earliest stages of pre-biotic development. In the model, amyloid protein fibres provide a protective support and compartment for nucleic acids. In turn, replicating nucleic acids stimulate fibre growth at amyloid free ends. Nucleic acid-amyloid fibre combinations are proposed to lengthen and then break through hydrostatic shear, exposing new amyloid free ends. This process would distribute stable replicating complexes throughout the primordial environment. The model provides a route into the RNA-protein world without the need for a distinct 'breakout' transition.  相似文献   

11.
Beyond their widespread application as genome-editing and regulatory tools, clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) systems also play a critical role in nucleic acid detection due to their high sensitivity and specificity. Recently developed Cas family effectors have opened the door to the development of new strategies for detecting different types of nucleic acids for a variety of purposes. Precise and efficient nucleic acid detection using CRISPR-Cas systems has the potential to advance both basic and applied biological research. In this review, we summarize the CRISPR-Cas systems used for the recognition and detection of specific nucleic acids for different purposes, including the detection of genomic DNA, nongenomic DNA, RNA, and pathogenic microbe genomes. Current challenges and further applications of CRISPR-based detection methods will be discussed according to the most recent developments.  相似文献   

12.
Ehud Gazit 《朊病毒》2007,1(1):32-35
The formation of amyloid fibrils is the hallmark of more than twenty human disorders of unrelated etiology. In all these cases, ordered fibrillar protein assemblies with a diameter of 7–10 nm are being observed. In spite of the great clinical important of amyloidassociated diseases, the molecular recognition and self-assembly processes that lead to the formation of the fibrils are not fully understood. One direction to decipher the mechanism of amyloid formation is the use of short peptides fragments as model systems. Short peptide fragments, as short as pentapeptides, were shown to form typical amyloid assemblies in vitro that have ultrastructural, biophysical, and cytotoxic properties, as those of assemblies that are being formed by full length polypeptides. When we analyzed such short fragments, we identified the central role of aromatic moieties in the ability to aggregate into ordered nano-fibrillar structures. This notion allowed us to discover additional very short amyloidogenic peptides as well as other aromatic peptide motifs, which can form various assemblies at the nano-scale (including nanotubes, nanospheres, and macroscopic hydrogels with nano-scale order). Other practical utilization of this concept, together with novel β breakage methods, is their use for the development of novel classes of amyloid formation inhibitors.Key Words: Alzheimer''s disease, amyloid disease, molecular recognition, nanostructures, protein aggregation, protein misfolding, self-assembly, type II diabetes  相似文献   

13.
In addition to the well‐established sense‐antisense complementarity abundantly present in the nucleic acid world and serving as a basic principle of the specific double‐helical structure of DNA, production of mRNA, and genetic code‐based biosynthesis of proteins, sense‐antisense complementarity is also present in proteins, where sense and antisense peptides were shown to interact with each other with increased probability. In nucleic acids, sense‐antisense complementarity is achieved via the Watson‐Crick complementarity of the base pairs or nucleotide pairing. In proteins, the complementarity between sense and antisense peptides depends on a specific hydropathic pattern, where codons for hydrophilic and hydrophobic amino acids in a sense peptide are complemented by the codons for hydrophobic and hydrophilic amino acids in its antisense counterpart. We are showing here that in addition to this pattern of the complementary hydrophobicity, sense and antisense peptides are characterized by the complementary order‐disorder patterns and show complementarity in sequence distribution of their disorder‐based interaction sites. We also discuss how this order‐disorder complementarity can be related to protein evolution.  相似文献   

14.
Amyloid fibrils are fibrous beta-structures that derive from abnormal folding and assembly of peptides and proteins. Despite a wealth of structural studies on amyloids, the nature of the amyloid structure remains elusive; possible connections to natural, beta-structured fibrous motifs have been suggested. In this work we focus on understanding amyloid structure and formation from sequences of a natural, beta-structured fibrous protein. We show that short peptides (25 to 6 amino acids) corresponding to repetitive sequences from the adenovirus fiber shaft have an intrinsic capacity to form amyloid fibrils as judged by electron microscopy, Congo Red binding, infrared spectroscopy, and x-ray fiber diffraction. In the presence of the globular C-terminal domain of the protein that acts as a trimerization motif, the shaft sequences adopt a triple-stranded, beta-fibrous motif. We discuss the possible structure and arrangement of these sequences within the amyloid fibril, as compared with the one adopted within the native structure. A 6-amino acid peptide, corresponding to the last beta-strand of the shaft, was found to be sufficient to form amyloid fibrils. Structural analysis of these amyloid fibrils suggests that perpendicular stacking of beta-strand repeat units is an underlying common feature of amyloid formation.  相似文献   

15.
The oligomerization and fibrillation of β‐amyloid (Aβ) peptides are important events in the pathogenesis of Alzheimer's disease. However, the motifs within the Aβ sequence that contribute to oligomerization and fibrillation and the complex interplay among these short motifs are unclear. In this study, the oligomerization and fibrillation abilities of the Aβ variants Aβ1–28, Aβ1–36, Aβ11–42, Aβ17–42, Aβ1–40 and Aβ1–42 were examined by thioflavin T fluorescence, western blotting and transmission electron microscopy. Compared with two C‐terminal‐truncated peptides (i.e. Aβ1–28 and Aβ1–36), Aβ11–42, Aβ17–42 and Aβ1–42 had stronger abilities to form oligomers. This indicated that amino acids 37–42 strengthen the β‐hairpin structure of Aβ. Both Aβ1–42 and Aβ1–40 could form fibres, but Aβ17–42 formed irregular fibres, suggesting that amino acids 1–17 were essential for Aβ fibre formation. Aβ1–28 and Aβ1–36 exhibited weak oligomerization and fibrillation, implying that they formed an unstable β‐hairpin structure owing to the incomplete C‐terminal region. Intermediate peptides were likely to form a stable structure, consistent with previous results. This work explains the roles and interplay among motifs within Aβ during oligomerization and fibrillation. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
Summary One of the essential relationships between nucleic acids and amino acids in present biological systems, and perhaps in precursors to these systems is expressed in binding interactions. Such interactions depend on the size, composition and conformation of the interacting species. A simplified model of such complex systems was tested in an attempt to assess first the compositional effect, i.e., the binding behavior of monomeric nucleic acid and protein components. Nine representative amino acids were immobilized individually on a prepared chromatographic support by the formation of an amide linkage. Selective binding of ribonucleoside 5-phosphates was exhibited by these amino acids under standardized conditions and the binding was characterized by a site-binding model. It was found that binding behavior was dependent of the nature of the base and the nature of the amino acid. Basic information is thus provided which should be useful in the interpretation of more complex nucleic acid-protein systems and the study of their role in the evolution of the cell.  相似文献   

17.
Amyloid plaques are the main molecular hallmark of Alzheimer's disease. Specific carriers are needed for molecular imaging and for specific drug delivery. In order to identify new low molecular weight amyloid plaque-specific ligands, the phage display technology was used to design short peptides that bind specifically to amyloid-beta protein, which is the principal component of amyloid plaques. For this purpose, a phage display library was designed from the amino acid sequence of amyloid-beta 1-42. Then, the diversity was increased by soft oligonucleotide-directed mutagenesis. This library was screened against amyloid-beta 1-42 and several phage clones were isolated. Their genomes were sequenced to identify the displayed peptides and their dissociation constants for amyloid-beta 1-42 binding were evaluated by ELISA. The two best peptides, which are derived from the C-terminus hydrophobic domain of amyloid-beta 1-42 that forms a beta-strand in amyloid fibers, were synthesized and biotinylated. After confirming their binding affinity for amyloid-beta 1-42 by ELISA, the specific interaction with amyloid plaques was validated by immunohistochemistry on brain sections harvested from a mouse model of Alzheimer's disease. The thioflavin T aggregation assay has furthermore shown that our peptides are able to inhibit the amyloid fiber formation. They are not toxic for neurons, and some of them are able to cross the blood-brain barrier after grafting to a magnetic resonance imaging contrast agent. To conclude, these peptides have high potential for molecular targeting of amyloid plaques, either as carriers of molecular imaging and therapeutic compounds or as amyloid fiber disrupting agents.  相似文献   

18.
Marked fluorescence in cytoplasm, nucleus, and nucleolus was observed in HeLa cells after incubation with each of several fluorescein isothiocyanate-labeled peptides (epithalon, Ala-Glu-Asp-Gly; pinealon, Glu-Asp-Arg; testagen, Lys-Glu-Asp-Gly). This means that short biologically active peptides are able to penetrate into an animal cell and its nucleus and, in principle they may interact with various components of cytoplasm and nucleus including DNA and RNA. It was established that various initial (intact) peptides differently affect the fluorescence of the 5,6-carboxyfluorescein-labeled deoxyribooligonucleotides and DNA-ethidium bromide complexes. The Stern-Volmer constants characterizing the degree of fluorescence quenching of various single- and double-stranded fluorescence-labeled deoxyribooligonucleotides with short peptides used were different depending on the peptide primary structures. This indicates the specific interaction between short biologically active peptides and nucleic acid structures. On binding to them, the peptides discriminate between different nucleotide sequences and recognize even their cytosine methylation status. Judging from corresponding constants of the fluorescence quenching, the epithalon, pinealon, and bronchogen (Ala-Glu-Asp-Leu) bind preferentially with deoxyribooligonucleotides containing CNG sequence (CNG sites are targets for cytosine DNA methylation in eukaryotes). Epithalon, testagen, and pinealon seem to preferentially bind with CAG- but bronchogen with CTG-containing sequences. The site-specific interactions of peptides with DNA can control epigenetically the cell genetic functions, and they seem to play an important role in regulation of gene activity even at the earliest stages of life origin and in evolution.  相似文献   

19.
Cheng  C. M.  Liu  X. H.  Li  Y. M.  Ma  Y.  Tan  B.  Wan  R.  Zhao  Y. F. 《Origins of life and evolution of the biosphere》2004,34(5):455-464
The possible role of phosphoryl amino acids for biomolecular origins is briefly reviewed. Peptide formation, ester formation, ester exchange on phosphorus and N to O migration occurred when the N-phosphoryl amino acid was incubated at room temperature. Short nucleotides and peptides were formed when nucleoside was reacted with N-phosphoryl amino acid at room temperature. Serine and threonine residues in their conjugate with different nucleosides (mediated with phosphorus) showed different self-cleavage activities. N-phosphoryl Histine and Ser-His dipeptide could cleave nucleic acids, proteins and esters in neutral medium. Based on a simple model, a pathway of 'co-evolution of protein and nucleic acid' was proposed.  相似文献   

20.
Altritol nucleic acids (ANAs) are a promising new tool in the development of artificial small interfering ribonucleic acids (siRNAs) for therapeutical applications. To mimic the siRNA:messenger RNA (mRNA) interactions, the crystal structure of the ANA:RNA construct a(CCGUAAUGCC-P):r(GGCAUUACGG) was determined to 1.96?? resolution which revealed the hybrid to form an A-type helix. As this A-form is a major requirement in the RNAi process, this crystal structure confirms the potential of altritol-modified siRNAs. Moreover, in the ANA strands, a new type of intrastrand interactions was found between the O2' hydroxyl group of one residue and the sugar ring O4' atom of the next residue. These interactions were further investigated by quantum chemical methods. Besides hydration effects, these intrastrand hydrogen bonds may also contribute to the stability of ANA:RNA duplexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号