首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objective

Increased risk for atherosclerosis is associated with infectious diseases including periodontitis. Natural IgM antibodies recognize pathogen-associated molecular patterns on bacteria, and oxidized lipid and protein epitopes on low-density lipoprotein (LDL) and apoptotic cells. We aimed to identify epitopes on periodontal pathogen Porphyromonas gingivalis recognized by natural IgM binding to malondialdehyde (MDA) modified LDL.

Methods and Results

Mouse monoclonal IgM (MDmAb) specific for MDA-LDL recognized epitopes on P. gingivalis on flow cytometry and chemiluminescence immunoassays. Immunization of C57BL/6 mice with P. gingivalis induced IgM, but not IgG, immune response to MDA-LDL and apoptotic cells. Immunization of LDLR−/− mice with P. gingivalis induced IgM, but not IgG, immune response to MDA-LDL and diminished aortic lipid deposition. On Western blot MDmAb bound to P. gingivalis fragments identified as arginine-specific gingipain (Rgp) by mass spectrometry. Recombinant domains of Rgp produced in E. coli were devoid of phosphocholine epitopes but contained epitopes recognized by MDmAb and human serum IgM. Serum IgM levels to P. gingivalis were associated with anti-MDA-LDL levels in humans.

Conclusion

Gingipain of P. gingivalis is recognized by natural IgM and shares molecular identity with epitopes on MDA-LDL. These findings suggest a role for natural antibodies in the pathogenesis of two related inflammatory diseases, atherosclerosis and periodontitis.  相似文献   

2.

Introduction

Clinical studies suggest a direct influence of periodontal disease (PD) on serum inflammatory markers and disease assessment of patients with established rheumatoid arthritis (RA). However, the influence of PD on arthritis development remains unclear. This investigation was undertaken to determine the contribution of chronic PD to immune activation and development of joint inflammation using the collagen-induced arthritis (CIA) model.

Methods

DBA1/J mice orally infected with Porphyromonas gingivalis were administered with collagen II (CII) emulsified in complete Freund’s adjuvant (CFA) or incomplete Freund’s adjuvant (IFA) to induce arthritis. Arthritis development was assessed by visual scoring of paw swelling, caliper measurement of the paws, mRNA expression, paw micro-computed tomography (micro-CT) analysis, histology, and tartrate resistant acid phosphatase for osteoclast detection (TRAP)-positive immunohistochemistry. Serum and reactivated splenocytes were evaluated for cytokine expression.

Results

Mice induced for PD and/or arthritis developed periodontal disease, shown by decreased alveolar bone and alteration of mRNA expression in gingival tissues and submandibular lymph nodes compared to vehicle. P. gingivalis oral infection increased paw swelling and osteoclast numbers in mice immunized with CFA/CII. Arthritis incidence and severity were increased by P. gingivalis in mice that received IFA/CII immunizations. Increased synovitis, bone erosions, and osteoclast numbers in the paws were observed following IFA/CII immunizations in mice infected with P gingivalis. Furthermore, cytokine analysis showed a trend toward increased serum Th17/Th1 ratios when P. gingivalis infection was present in mice receiving either CFA/CII or IFA/CII immunizations. Significant cytokine increases induced by P. gingivalis oral infection were mostly associated to Th17-related cytokines of reactivated splenic cells, including IL-1β, IL-6, and IL-22 in the CFA/CII group and IL-1β, tumor necrosis factor-α, transforming growth factor-β, IL-6 and IL-23 in the IFA/CII group.

Conclusions

Chronic P. gingivalis oral infection prior to arthritis induction increases the immune system activation favoring Th17 cell responses, and ultimately accelerating arthritis development. These results suggest that chronic oral infection may influence RA development mainly through activation of Th17-related pathways.  相似文献   

3.

Background

Porphyromonas gingivalis is a major pathogen of periodontal disease that affects a majority of adults worldwide. Increasing evidence shows that periodontal disease is linked to various systemic diseases like diabetes and cardiovascular disease, by contributing to increased systemic levels of inflammation. Lipopolysaccharides (LPS), as a key virulent attribute of P. gingivalis, possesses significant amount of lipid A heterogeneity containing tetra- (LPS1435/1449) and penta-acylated (LPS1690) structures. Hitherto, the exact molecular mechanism of P. gingivalis LPS involved in periodontal pathogenesis remains unclear, due to limited understanding of the specific receptors and signaling pathways involved in LPS-host cell interactions.

Methodology/Principal Findings

This study systematically investigated the effects of P. gingivalis LPS1435/1449 and LPS1690 on the expression of TLR2 and TLR4 signal transduction and the activation of pro-inflammatory cytokines IL-6 and IL-8 in human gingival fibroblasts (HGFs). We found that LPS1435/1449 and LPS1690 differentially modulated TLR2 and TLR4 expression. NF-κB pathway was significantly activated by LPS1690 but not by LPS1435/1449. In addition, LPS1690 induced significant expression of NF-κB and p38 MPAK pathways-related genes, such as NFKBIA, NFKB1, IKBKB, MAP2K4 and MAPK8. Notably, the pro-inflammatory genes including GM-CSF, CXCL10, G-CSF, IL-6, IL-8 and CCL2 were significantly upregulated by LPS1690 while down-regulated by LPS1435/1449. Blocking assays confirmed that TLR4-mediated NF-κB signaling was vital in LPS1690-induced expression of IL-6 and IL-8 in HGFs.

Conclusions/Significance

The present study suggests that the tetra- and penta-acylated lipid A structures of P. gingivalis LPS differentially activate TLR4-mediated NF-κB signaling pathway, and significantly modulate the expression of IL-6 and IL-8 in HGFs. The ability to alter the lipid A structure of LPS could be one of the strategies carried-out by P. gingivalis to evade innate host defense in gingival tissues, thereby contributing to periodontal pathogenesis.  相似文献   

4.
5.

Background

Macrophage migration inhibitory factor (MIF) is essential for controlling parasite burden and survival in a model of systemic Toxoplasma gondii infection. Peroral T. gondii infection induces small intestine necrosis and death in susceptible hosts, and in many aspects resembles inflammatory bowel disease (IBD). Considering the critical role of MIF in the pathogenesis of IBD, we hypothesized that MIF participates in the inflammatory response induced by oral infection with T. gondii.

Methodology/Principal Findings

Mif deficient (Mif/) and wild-type mice in the C57Bl/6 background were orally infected with T. gondii strain ME49. Mif/ mice had reduced lethality, ileal inflammation and tissue damage despite of an increased intestinal parasite load compared to wt mice. Lack of MIF caused a reduction of TNF-α, IL-12, IFN-γ and IL-23 and an increased expression of IL-22 in ileal mucosa. Moreover, suppressed pro-inflammatory responses at the ileal mucosa observed in Mif/ mice was not due to upregulation of IL-4, IL-10 or TGF-β. MIF also affected the expression of matrix metalloproteinase-9 (MMP-9) but not MMP-2 in the intestine of infected mice. Signs of systemic inflammation including the increased concentrations of inflammatory cytokines in the plasma and liver damage were less pronounced in Mif/ mice compared to wild-type mice.

Conclusion/Significance

In conclusion, our data suggested that in susceptible hosts MIF controls T. gondii infection with the cost of increasing local and systemic inflammation, tissue damage and death.  相似文献   

6.

Objective

MCPIP1 is a newly identified protein that profoundly impacts immunity and inflammation. We aim to test if MCPIP1 deficiency in hematopoietic cells results in systemic inflammation and accelerates atherogenesis in mice.

Approach and Results

After lethally irradiated, LDLR−/− mice were transplanted with bone marrow cells from either wild-type or MCPIP1−/− mice. These chimeric mice were fed a western-type diet for 7 weeks. We found that bone marrow MCPIP1−/− mice displayed a phenotype similar to that of whole body MCPIP1−/− mice, with severe systemic and multi-organ inflammation. However, MCPIP1−/− bone marrow recipients developed >10-fold less atherosclerotic lesions in the proximal aorta than WT bone marrow recipients, and essentially no lesions in en face aorta. The diminishment in atherosclerosis in bone marrow MCPIP1−/− mice may be partially attributed to the slight decrease in their plasma lipids. Flow cytometric analysis of splenocytes showed that bone marrow MCPIP1−/− mice contained reduced numbers of T cells and B cells, but increased numbers of regulatory T cells, Th17 cells, CD11b+/Gr1+ cells and CD11b+/Ly6Clow cells. This overall anti-atherogenic leukocyte profile may also contribute to the reduced atherogenesis. We also examined the cholesterol efflux capability of MCPIP1 deficient macrophages, and found that MCPIP1deficiency increased cholesterol efflux to apoAI and HDL, due to increased protein levels of ABCA1 and ABCG1.

Conclusions

Hematopoietic deficiency of MCPIP1 resulted in severe systemic and multi-organ inflammation but paradoxically diminished atherogenesis in mice. The reduced atheroegensis may be explained by the decreased plasma cholesterol levels, the anti-atherogenic leukocyte profile, as well as enhanced cholesterol efflux capability. This study suggests that, while atherosclerosis is a chronic inflammatory disease, the mechanisms underlying atherogenesis-associated inflammation in arterial wall versus the inflammation in solid organs may be substantially different.  相似文献   

7.

Background

Lipid accumulation has been shown to accelerate renal injury, and the intracellular accumulation of lipids may be caused by alterations in synthesis as well as lipid uptake and efflux. We have investigated the role of cellular cholesterol transport proteins including adenosine triphosphate binding cassette transporter A1 (ABCA1), G1 (ABCG1) and scavenger receptor class B type I (SR-BI) in diabetic nephropathy.

Methods

Protein expression and the ability to mediate cholesterol efflux of ABCA1, ABCG1 and SR-BI was determined in human renal mesangial cells and proximal tubular epithelial cells cultured under normal or high glucose conditions. Renal expression of these cholesterol transporters was examined in a murine model of streptozotocin-induced type 1 diabetes.

Results

ABCA1, ABCG1 and SR-BI were expressed in both human renal mesangial cells and proximal tubular epithelial cells, and mediated cholesterol efflux to apolipoprotein AI and HDL. In vitro, hyperglycemia reduced the expression and the ability to mediate cholesterol efflux of all three cholesterol transporters (p<0.05). In vivo studies showed that intra-renal accumulation of lipids was increased in diabetic mice, particularly in mice with nephropathy. This was associated with a significant reduction in the expression of ABCA1, ABCG1 and SR-BI in the kidneys. These changes were already seen in diabetic mice without nephropathy and preceded the development of nephropathy. Diabetic mice with nephropathy had the lowest level of these cholesterol transporters.

Conclusion

Inducing diabetes with streptozotocin significantly reduced renal expression of ABCA1, ABCG1 and SR-BI. Defects in cholesterol export pathway in renal cells could therefore promote cholesterol accumulation and might contribute to the development of diabetic nephropathy.  相似文献   

8.
9.

Background

Inflammation is commonly followed by the release of endogenous proteins called danger associated molecular patterns (DAMPs) that are able to warn the host for eminent danger. S100A8/A9 subunits are DAMPs that belong to the S100 family of calcium binding proteins. S100A8/A9 complexes induce an inflammatory response and their expression correlates with disease severity in several inflammatory disorders. S100A8/A9 promote endotoxin- and Escherichia (E.) coli-induced sepsis showing its contribution in systemic infection. The role of S100A8/A9 during a local infection of the urinary tract system caused by E. coli remains unknown.

Methodology/Principal Findings

We investigated the contribution of S100A8/A9 in acute urinary tract infection (UTI) by instilling 2 different doses of uropathogenic E. coli transurethrally in wild type (WT) and S100A9 knockout (KO) mice. Subsequently, we determined bacterial outgrowth, neutrophilic infiltrate and inflammatory mediators in bladder and kidney 24 and 48 hours later. UTI resulted in a substantial increase of S100A8/A9 protein in bladder and kidney tissue of WT mice. S100A9 KO mice displayed similar bacterial load in bladder or kidney homogenate compared to WT mice using 2 different doses at 2 different time points. S100A9 deficiency had little effect on the inflammatory responses to E. Coli-induced UTI infection, as assessed by myeloperoxidase activity in bladder and kidneys, histopathologic analysis, and renal and bladder cytokine concentrations.

Conclusions

We show that despite high S100A8/A9 expression in bladder and kidney tissue upon UTI, S100A8/A9 does not contribute to an effective host response against E. Coli in the urinary tract system.  相似文献   

10.

Background

Trypanosoma cruzi, the causative agent of Chagas disease, has high affinity for lipoproteins and adipose tissue. Infection results in myocarditis, fat loss and alterations in lipid homeostasis. This study was aimed at analyzing the effect of high fat diet (HFD) on regulating acute T. cruzi infection-induced myocarditis and to evaluate the effect of HFD on lipid metabolism in adipose tissue and heart during acute T. cruzi infection.

Methodology/Principal Findings

CD1 mice were infected with T. cruzi (Brazil strain) and fed either a regular control diet (RD) or HFD for 35 days following infection. Serum lipid profile, tissue cholesterol levels, blood parasitemia, and tissue parasite load were analyzed to evaluate the effect of diet on infection. MicroPET and MRI analysis were performed to examine the morphological and functional status of the heart during acute infection. qPCR and immunoblot analysis were carried out to analyze the effect of diet on the genes involved in the host lipid metabolism during infection. Oil red O staining of the adipose tissue demonstrated reduced lipolysis in HFD compared to RD fed mice. HFD reduced mortality, parasitemia and cardiac parasite load, but increased parasite load in adipocytes. HFD decreased lipolysis during acute infection. Both qPCR and protein analysis demonstrated alterations in lipid metabolic pathways in adipose tissue and heart in RD fed mice, which were further modulated by HFD. Both microPET and MRI analyses demonstrated changes in infected RD murine hearts which were ameliorated by HFD.

Conclusion/Significance

These studies indicate that Chagasic cardiomyopathy is associated with a cardiac lipidpathy and that both cardiac lipotoxicity and adipose tissue play a role in the pathogenesis of Chagas disease. HFD protected mice from T. cruzi infection-induced myocardial damage most likely due to the effects of HFD on both adipogenesis and T. cruzi infection-induced cardiac lipidopathy.  相似文献   

11.
12.

Background

The tachykinins are implicated in neurogenic inflammation and the neuropeptide substance P in particular has been shown to be a proinflammatory mediator. A role for the tachykinins in host response to lung challenge has been previously demonstrated but has been focused predominantly on the release of the tachykinins from nerves innervating the lung. We have previously demonstrated the most dramatic phenotype described for the substance P encoding gene preprotachykinin-A (PPT-A) to date in controlling the host immune response to the murine gammaherpesvirus 68, in the lung.

Methodology/Principal Findings

In this study we have utilised transgenic mice engineered to co-ordinately express the beta-galactosidase marker gene along with PPT-A to facilitate the tracking of PPT-A expression. Using a combination of these mice and conventional immunohistology we now demonstrate that PPT-A gene expression and substance P peptide are induced in cells of the respiratory tract including tracheal, bronchiolar and alveolar epithelial cells and macrophages after viral infection. This induction was observed 24h post infection, prior to observable inflammation and the expression of pro-inflammatory chemokines in this model. Induced expression of the PPT-A gene and peptide persisted in the lower respiratory tract through day 7 post infection.

Conclusions/Significance

Non-neuronal PPT-A expression early after infection may have important clinical implications for the progression or management of lung disease or infection aside from the well characterised later involvement of the tachykinins during the inflammatory response.  相似文献   

13.
Several successful pathogens have evolved mechanisms to evade host defense, resulting in the establishment of persistent and chronic infections. One such pathogen, Porphyromonas gingivalis, induces chronic low-grade inflammation associated with local inflammatory bone loss and systemic inflammation manifested as atherosclerosis. P. gingivalis expresses an atypical lipopolysaccharide (LPS) structure containing heterogeneous lipid A species, that exhibit Toll-like receptor-4 (TLR4) agonist or antagonist activity, or are non-activating at TLR4. In this study, we utilized a series of P. gingivalis lipid A mutants to demonstrate that antagonistic lipid A structures enable the pathogen to evade TLR4-mediated bactericidal activity in macrophages resulting in systemic inflammation. Production of antagonistic lipid A was associated with the induction of low levels of TLR4-dependent proinflammatory mediators, failed activation of the inflammasome and increased bacterial survival in macrophages. Oral infection of ApoE−/− mice with the P. gingivalis strain expressing antagonistic lipid A resulted in vascular inflammation, macrophage accumulation and atherosclerosis progression. In contrast, a P. gingivalis strain producing exclusively agonistic lipid A augmented levels of proinflammatory mediators and activated the inflammasome in a caspase-11-dependent manner, resulting in host cell lysis and decreased bacterial survival. ApoE−/− mice infected with this strain exhibited diminished vascular inflammation, macrophage accumulation, and atherosclerosis progression. Notably, the ability of P. gingivalis to induce local inflammatory bone loss was independent of lipid A expression, indicative of distinct mechanisms for induction of local versus systemic inflammation by this pathogen. Collectively, our results point to a pivotal role for activation of the non-canonical inflammasome in P. gingivalis infection and demonstrate that P. gingivalis evades immune detection at TLR4 facilitating chronic inflammation in the vasculature. These studies support the emerging concept that pathogen-mediated chronic inflammatory disorders result from specific pathogen-mediated evasion strategies resulting in low-grade chronic inflammation.  相似文献   

14.

Background

Recent trials demonstrate increased pneumonia risk in chronic obstructive pulmonary disease patients treated with the inhaled corticosteroid (ICS) fluticasone propionate (FP). There is limited work describing FP effects on host defenses against bacterial pneumonia.

Methods

C57BL/6 mice received daily, nose-only exposure to nebulized FP or vehicle for 8 days, followed by pulmonary challenge with Klebsiella pneumoniae. Bacterial burden, phagocytosis, leukocyte recruitment, cytokine expression, nitric oxide release, and survival were measured.

Results

Inhaled FP increased bacterial burden in lungs and blood 48 h after infection but affected neither in vivo phagocytosis of bacteria by alveolar macrophages (AM) nor alveolar neutrophil recruitment. AM from FP-treated mice showed impaired expression of infection induced TNF-alpha, IP-10 (CXCL-10), and interleukin 6 (IL-6), and AM also showed a trend towards impaired intracellular pathogen control following in vivo infection. In vitro FP treatment resulted in a dose-dependent impairment of cytokine expression by AM. Furthermore, infection-induced nitric oxide (but not hydrogen peroxide) production was impaired by FP in vivo and in vitro. FP decreased survival in this model.

Conclusions

Exposure to inhaled FP impairs pulmonary clearance of K. pneumoniae in mice, an effect associated with greater systemic bacteremia and death. Decreased AM cytokine and nitric oxide expression parallel the failure to control infection. These results support the study of ICS effects on human pulmonary host defenses.  相似文献   

15.

Background

Periodontal infections are independent risk factors for atherosclerosis. However, the exact mechanisms underlying this link are yet unclear. Here, we evaluate the in vivo effects of bacteremia with a periodontal pathogen on endothelial progenitors, bone marrow-derived cells capable of endothelial regeneration, and delineate the critical pathways for these effects.

Methods

12-week old C57bl6 wildtype or toll-like receptor (TLR)-2 deficient mice were repeatedly intravenously challenged with 109 live P. gingivalis 381 or vehicle. Numbers of Sca1+/flk1+ progenitors, circulating angiogenic cells, CFU-Hill, and late-outgrowth EPC were measured by FACS/culture. Endothelial function was assessed using isolated organ baths, reendothelization was measured in a carotid injury model. RANKL/osteoprotegerin levels were assessed by ELISA/qPCR.

Results

In wildtype mice challenged with intravenous P.gingivalis, numbers of Sca1+/flk1+ progenitors, CAC, CFU-Hill, and late-outgrowth EPC were strongly increased in peripheral circulation and spleen, whereas Sca1+/flk1+ progenitor numbers in bone marrow decreased. Circulating EPCs were functional, as indicated by improved endothelial function and improved reendothelization in infected mice. The osteoprotegerin/RANKL ratio was increased after P. gingivalis challenge in the bone marrow niche of wildtype mice and late-outgrowth EPC in vitro. Conversely, in mice deficient in TLR2, no increase in progenitor mobilization or osteoprotegerin/RANKL ratio was detected.

Conclusion

Recurrent transient bacteremias, a feature of periodontitis, increase peripheral EPC counts and decrease EPC pools in the bone marrow, thereby possibly reducing overall endothelial regeneration capacity, conceivably explaining pro-atherogenic properties of periodontal infections. These effects are seemingly mediated by toll-like receptor (TLR)-2.  相似文献   

16.

Background

Macrophage migration inhibitory factor (MIF) has emerged as a pivotal mediator of innate immunity and has been shown to be an important effector molecule in severe sepsis. Melioidosis, caused by Burkholderia pseudomallei, is an important cause of community-acquired sepsis in Southeast-Asia. We aimed to characterize the expression and function of MIF in melioidosis.

Methodology and Principal Findings

MIF expression was determined in leukocytes and plasma from 34 melioidosis patients and 32 controls, and in mice infected with B. pseudomallei. MIF function was investigated in experimental murine melioidosis using anti-MIF antibodies and recombinant MIF. Patients demonstrated markedly increased MIF mRNA leukocyte and MIF plasma concentrations. Elevated MIF concentrations were associated with mortality. Mice inoculated intranasally with B. pseudomallei displayed a robust increase in pulmonary and systemic MIF expression. Anti-MIF treated mice showed lower bacterial loads in their lungs upon infection with a low inoculum. Conversely, mice treated with recombinant MIF displayed a modestly impaired clearance of B. pseudomallei. MIF exerted no direct effects on bacterial outgrowth or phagocytosis of B. pseudomallei.

Conclusions

MIF concentrations are markedly elevated during clinical melioidosis and correlate with patients'' outcomes. In experimental melioidosis MIF impaired antibacterial defense.  相似文献   

17.

Background

The small intestine plays a crucial role in the pathophysiology of sepsis and has been referred to as the “motor” of the systemic inflammatory response. One proposed mechanism is that toxic gut-derived lipid factors, transported in mesenteric lymph, induce systemic injury and distant organ failure. However, the pathways involved are yet to be defined and the role of intestinal chylomicron assembly and secretion in transporting these lipid factors is unknown. Here we studied the outcome of sepsis in mice with conditional, intestine-specific deletion of microsomal triglyceride transfer protein (Mttp-IKO), which exhibit a block in chylomicron assembly together with lipid malabsorption.

Methodology/Principal Findings

Mttp-IKO mice and controls underwent intratracheal injection with either Pseudomonas aeruginosa or sterile saline. Mttp-IKO mice exhibited decreased seven-day mortality, with 0/20 (0%) dying compared to 5/17 (29%) control mice (p<0.05). This survival advantage in Mttp-IKO mice, however, was not associated with improvements in pulmonary bacterial clearance or neutrophil infiltration. Rather, Mttp-IKO mice exhibited protection against sepsis-associated decreases in villus length and intestinal proliferation and were also protected against increased intestinal apoptosis, both central features in control septic mice. Serum IL-6 levels, a major predictor of mortality in human and mouse models of sepsis, were elevated 8-fold in septic control mice but remained unaltered in septic Mttp-IKO mice. Serum high density lipoprotein (HDL) levels were reduced in septic control mice but were increased in septic Mttp-IKO mice. The decreased levels of HDL were associated with decreased hepatic expression of apolipoprotein A1 in septic control mice.

Conclusions/Significance

These studies suggest that strategies directed at blocking intestinal chylomicron secretion may attenuate the progression and improve the outcome of sepsis through effects mediated by metabolic and physiological adaptations in both intestinal and hepatic lipid flux.  相似文献   

18.

Background

High-fat diets promote hepatic lipid accumulation. Paradoxically, these diets also induce lipogenic gene expression in rodent liver. Whether high expression of these genes actually results in an increased flux through the de novo lipogenic pathway in vivo has not been demonstrated.

Methodology/Principal Findings

To interrogate this apparent paradox, we have quantified de novo lipogenesis in C57Bl/6J mice fed either chow, a high-fat or a n-3 polyunsaturated fatty acid (PUFA)-enriched high-fat diet. A novel approach based on mass isotopomer distribution analysis (MIDA) following 1-13C acetate infusion was applied to simultaneously determine de novo lipogenesis, fatty acid elongation as well as cholesterol synthesis. Furthermore, we measured very low density lipoprotein-triglyceride (VLDL-TG) production rates. High-fat feeding promoted hepatic lipid accumulation and induced the expression of lipogenic and cholesterogenic genes compared to chow-fed mice: induction of gene expression was found to translate into increased oleate synthesis. Interestingly, this higher lipogenic flux (+74 µg/g/h for oleic acid) in mice fed the high-fat diet was mainly due to an increased hepatic elongation of unlabeled palmitate (+66 µg/g/h) rather than to elongation of de novo synthesized palmitate. In addition, fractional cholesterol synthesis was increased, i.e. 5.8±0.4% vs. 8.1±0.6% for control and high fat-fed animals, respectively. Hepatic VLDL-TG production was not affected by high-fat feeding. Partial replacement of saturated fat by fish oil completely reversed the lipogenic effects of high-fat feeding: hepatic lipogenic and cholesterogenic gene expression levels as well as fatty acid and cholesterol synthesis rates were normalized.

Conclusions/Significance

High-fat feeding induces hepatic fatty acid synthesis in mice, by chain elongation and subsequent desaturation rather than de novo synthesis, while VLDL-TG output remains unaffected. Suppression of lipogenic fluxes by fish oil prevents from high fat diet-induced hepatic steatosis in mice.  相似文献   

19.

Background

Apoptosis of lymphocytes is important in the termination of an immune response to infection but has also been shown to have detrimental effects in animal models of systemic infection and sepsis. We sought to characterize lymphocyte apoptosis in an animal model of pneumonia due to Pneumocystis murina, an infection localized to the lungs.

Methods

Control mice and mice depleted of CD4+ lymphocytes were inoculated with Pneumocystis. Apoptosis of lung and spleen lymphocytes was assayed by flow cytometry and PCR assay of apoptotic proteins.

Results

In control mice, apoptosis of lung lymphocytes was maximal just after the infection was cleared from lung tissue and then declined. However, in CD4-depleted mice, apoptosis was also upregulated in recruited lymphocytes in spite of progressive infection. In splenic lymphocytes, apoptosis was observed early at 1 week after inoculation and then declined. Apoptosis of lung lymphocytes in control mice was associated with a decrease in mRNA for Bcl-2 and an increase in mRNA for Bim. In CD4-depleted mice, lavaged CD8+ cells did change intracellular Bcl-2 but showed increased mRNA for Bim.

Conclusion

Apoptosis of both pulmonary and extrapulmonary lymphocytes is part of the normal host response to Pneumocystis but is also triggered in CD4-deficient animals with progressive infection. In normal mice apoptosis of pulmonary lymphocytes may serve to terminate the immune response in lung tissue. Apoptosis of lung lymphocytes takes place via both the intrinsic and extrinsic apoptotic pathways and is associated with changes in both pro- and anti-apoptotic proteins.  相似文献   

20.

Background

Acute pancreatitis (AP) is a frequent gastrointestinal disorder that causes significant morbidity, and its incidence has been progressively increasing. AP starts as a local inflammation in the pancreas that often leads to systemic inflammatory response and complications. Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose inhibition in murine models has beneficial effects in inflammatory diseases, but its significance in AP remains unexplored.

Methodology/Principal Findings

To investigate whether sEH may have a causal role in AP we utilized Ephx2 knockout (KO) mice to determine the effects of sEH deficiency on cerulein- and arginine-induced AP. sEH expression increased at the protein and messenger RNA levels, as well as enzymatic activity in the early phase of cerulein- and arginine-induced AP in mice. In addition, amylase and lipase levels were lower in cerulein-treated Ephx2 KO mice compared with controls. Moreover, pancreatic mRNA and serum concentrations of the inflammatory cytokines IL-1B and IL-6 were lower in cerulein-treated Ephx2 KO mice compared with controls. Further, Ephx2 KO mice exhibited decreased cerulein- and arginine-induced NF-κB inflammatory response, MAPKs activation and decreased cell death. Conclusions -These findings demonstrate a novel role for sEH in the progression of cerulein- and arginine-induced AP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号