首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Performing actions with sensory consequences modifies physiological and behavioral responses relative to otherwise identical sensory input perceived in a passive manner. It is assumed that such modifications occur through an efference copy sent from motor cortex to sensory regions during performance of voluntary actions. In the auditory domain most behavioral studies report attenuated perceived loudness of self-generated auditory action-consequences. However, several recent behavioral and physiological studies report enhanced responses to such consequences. Here we manipulated the intensity of self-generated and externally-generated sounds and examined the type of perceptual modification (enhancement vs. attenuation) reported by healthy human subjects. We found that when the intensity of self-generated sounds was low, perceived loudness is enhanced. Conversely, when the intensity of self-generated sounds was high, perceived loudness is attenuated. These results might reconcile some of the apparent discrepancies in the reported literature and suggest that efference copies can adapt perception according to the differential sensory context of voluntary actions.  相似文献   

2.
Research on the neural basis of speech-reading implicates a network of auditory language regions involving inferior frontal cortex, premotor cortex and sites along superior temporal cortex. In audiovisual speech studies, neural activity is consistently reported in posterior superior temporal Sulcus (pSTS) and this site has been implicated in multimodal integration. Traditionally, multisensory interactions are considered high-level processing that engages heteromodal association cortices (such as STS). Recent work, however, challenges this notion and suggests that multisensory interactions may occur in low-level unimodal sensory cortices. While previous audiovisual speech studies demonstrate that high-level multisensory interactions occur in pSTS, what remains unclear is how early in the processing hierarchy these multisensory interactions may occur. The goal of the present fMRI experiment is to investigate how visual speech can influence activity in auditory cortex above and beyond its response to auditory speech. In an audiovisual speech experiment, subjects were presented with auditory speech with and without congruent visual input. Holding the auditory stimulus constant across the experiment, we investigated how the addition of visual speech influences activity in auditory cortex. We demonstrate that congruent visual speech increases the activity in auditory cortex.  相似文献   

3.
Keller GB  Bonhoeffer T  Hübener M 《Neuron》2012,74(5):809-815
Studies in anesthetized animals have suggested that activity in early visual cortex is mainly driven by visual input and is well described by a feedforward processing hierarchy. However, evidence from experiments on awake animals has shown that both eye movements and behavioral state can strongly modulate responses of neurons in visual cortex; the functional significance of this modulation, however, remains elusive. Using visual-flow feedback manipulations during locomotion in a virtual reality environment, we found that responses in layer 2/3 of mouse primary visual cortex are strongly driven by locomotion and by mismatch between actual and expected visual feedback. These data suggest that processing in visual cortex may be based on predictive coding strategies that use motor-related and visual input to detect mismatches between predicted and actual visual feedback.  相似文献   

4.
Mochida T  Gomi H  Kashino M 《PloS one》2010,5(11):e13866

Background

There has been plentiful evidence of kinesthetically induced rapid compensation for unanticipated perturbation in speech articulatory movements. However, the role of auditory information in stabilizing articulation has been little studied except for the control of voice fundamental frequency, voice amplitude and vowel formant frequencies. Although the influence of auditory information on the articulatory control process is evident in unintended speech errors caused by delayed auditory feedback, the direct and immediate effect of auditory alteration on the movements of articulators has not been clarified.

Methodology/Principal Findings

This work examined whether temporal changes in the auditory feedback of bilabial plosives immediately affects the subsequent lip movement. We conducted experiments with an auditory feedback alteration system that enabled us to replace or block speech sounds in real time. Participants were asked to produce the syllable /pa/ repeatedly at a constant rate. During the repetition, normal auditory feedback was interrupted, and one of three pre-recorded syllables /pa/, /Φa/, or /pi/, spoken by the same participant, was presented once at a different timing from the anticipated production onset, while no feedback was presented for subsequent repetitions. Comparisons of the labial distance trajectories under altered and normal feedback conditions indicated that the movement quickened during the short period immediately after the alteration onset, when /pa/ was presented 50 ms before the expected timing. Such change was not significant under other feedback conditions we tested.

Conclusions/Significance

The earlier articulation rapidly induced by the progressive auditory input suggests that a compensatory mechanism helps to maintain a constant speech rate by detecting errors between the internally predicted and actually provided auditory information associated with self movement. The timing- and context-dependent effects of feedback alteration suggest that the sensory error detection works in a temporally asymmetric window where acoustic features of the syllable to be produced may be coded.  相似文献   

5.
Our sensory systems are simultaneously activated as the result of our own actions and changes in the external world. The ability to distinguish self-generated sensory events from those that arise externally is thus essential for perceptual stability and accurate motor control. Recently, progress has been made towards understanding how this distinction is made. It has been proposed that an internal prediction of the consequences of our actions is compared to the actual sensory input to cancel the resultant self-generated activation. Evidence in support of this hypothesis has been obtained for early stages of sensory processing in the vestibular, visual and somatosensory systems. These findings have implications for the sensory-motor transformations that are needed to guide behavior.  相似文献   

6.
In this review we discuss how we are aware that actions are self-generated. We review behavioural data that suggest that a prediction of the sensory consequences of movement might be used to label actions and their consequences as self-generated. We also describe recent functional neuroimaging experiments and studies of neurological and psychiatric patients, which suggest that the parietal cortex plays a crucial role in the awareness of action.  相似文献   

7.
Although nearly half of the synaptic input to neurons in the dorsal thalamus comes from the cerebral cortex, the role of corticothalamic projections in sensory processing remains elusive. Although sensory afferents certainly establish the basic receptive field properties of thalamic neurons, increasing evidence indicates that feedback from the cortex plays a crucial role in shaping thalamic responses. Here, we review recent work on the corticothalamic pathways associated with the visual, auditory, and somatosensory systems. Collectively, these studies demonstrate that sensory responses of thalamic neurons result from dynamic interactions between feedforward and feedback pathways.  相似文献   

8.
Speech perception often benefits from vision of the speaker's lip movements when they are available. One potential mechanism underlying this reported gain in perception arising from audio-visual integration is on-line prediction. In this study we address whether the preceding speech context in a single modality can improve audiovisual processing and whether this improvement is based on on-line information-transfer across sensory modalities. In the experiments presented here, during each trial, a speech fragment (context) presented in a single sensory modality (voice or lips) was immediately continued by an audiovisual target fragment. Participants made speeded judgments about whether voice and lips were in agreement in the target fragment. The leading single sensory context and the subsequent audiovisual target fragment could be continuous in either one modality only, both (context in one modality continues into both modalities in the target fragment) or neither modalities (i.e., discontinuous). The results showed quicker audiovisual matching responses when context was continuous with the target within either the visual or auditory channel (Experiment 1). Critically, prior visual context also provided an advantage when it was cross-modally continuous (with the auditory channel in the target), but auditory to visual cross-modal continuity resulted in no advantage (Experiment 2). This suggests that visual speech information can provide an on-line benefit for processing the upcoming auditory input through the use of predictive mechanisms. We hypothesize that this benefit is expressed at an early level of speech analysis.  相似文献   

9.
For humans and animals, the ability to discriminate speech and conspecific vocalizations is an important physiological assignment of the auditory system. To reveal the underlying neural mechanism, many electrophysiological studies have investigated the neural responses of the auditory cortex to conspecific vocalizations in monkeys. The data suggest that vocalizations may be hierarchically processed along an anterior/ventral stream from the primary auditory cortex (A1) to the ventral prefrontal cortex. To date, the organization of vocalization processing has not been well investigated in the auditory cortex of other mammals. In this study, we examined the spike activities of single neurons in two early auditory cortical regions with different anteroposterior locations: anterior auditory field (AAF) and posterior auditory field (PAF) in awake cats, as the animals were passively listening to forward and backward conspecific calls (meows) and human vowels. We found that the neural response patterns in PAF were more complex and had longer latency than those in AAF. The selectivity for different vocalizations based on the mean firing rate was low in both AAF and PAF, and not significantly different between them; however, more vocalization information was transmitted when the temporal response profiles were considered, and the maximum transmitted information by PAF neurons was higher than that by AAF neurons. Discrimination accuracy based on the activities of an ensemble of PAF neurons was also better than that of AAF neurons. Our results suggest that AAF and PAF are similar with regard to which vocalizations they represent but differ in the way they represent these vocalizations, and there may be a complex processing stream between them.  相似文献   

10.
The present article outlines the contribution of the mismatch negativity (MMN), and its magnetic equivalent MMNm, to our understanding of the perception of speech sounds in the human brain. MMN data indicate that each sound, both speech and non-speech, develops its neural representation corresponding to the percept of this sound in the neurophysiological substrate of auditory sensory memory. The accuracy of this representation, determining the accuracy of the discrimination between different sounds, can be probed with MMN separately for any auditory feature or stimulus type such as phonemes. Furthermore, MMN data show that the perception of phonemes, and probably also of larger linguistic units (syllables and words), is based on language-specific phonetic traces developed in the posterior part of the left-hemisphere auditory cortex. These traces serve as recognition models for the corresponding speech sounds in listening to speech.  相似文献   

11.
Hearing one’s own voice is critical for fluent speech production as it allows for the detection and correction of vocalization errors in real time. This behavior known as the auditory feedback control of speech is impaired in various neurological disorders ranging from stuttering to aphasia; however, the underlying neural mechanisms are still poorly understood. Computational models of speech motor control suggest that, during speech production, the brain uses an efference copy of the motor command to generate an internal estimate of the speech output. When actual feedback differs from this internal estimate, an error signal is generated to correct the internal estimate and update necessary motor commands to produce intended speech. We were able to localize the auditory error signal using electrocorticographic recordings from neurosurgical participants during a delayed auditory feedback (DAF) paradigm. In this task, participants hear their voice with a time delay as they produced words and sentences (similar to an echo on a conference call), which is well known to disrupt fluency by causing slow and stutter-like speech in humans. We observed a significant response enhancement in auditory cortex that scaled with the duration of feedback delay, indicating an auditory speech error signal. Immediately following auditory cortex, dorsal precentral gyrus (dPreCG), a region that has not been implicated in auditory feedback processing before, exhibited a markedly similar response enhancement, suggesting a tight coupling between the 2 regions. Critically, response enhancement in dPreCG occurred only during articulation of long utterances due to a continuous mismatch between produced speech and reafferent feedback. These results suggest that dPreCG plays an essential role in processing auditory error signals during speech production to maintain fluency.

Hearing one’s own voice is critical for fluent speech production, allowing detection and correction of vocalization errors in real-time. This study shows that the dorsal precentral gyrus is a critical component of a cortical network that monitors auditory feedback to produce fluent speech; this region is engaged specifically when speech production is effortful during articulation of long utterances.  相似文献   

12.
Tactile information is actively acquired and processed in the brain through concerted interactions between movement and sensation. Somatosensory input is often the result of self-generated movement during the active touch of objects, and conversely, sensory information is used to refine motor control. There must therefore be important interactions between sensory and motor pathways, which we chose to investigate in the mouse whisker sensorimotor system. Voltage-sensitive dye was applied to the neocortex of mice to directly image the membrane potential dynamics of sensorimotor cortex with subcolumnar spatial resolution and millisecond temporal precision. Single brief whisker deflections evoked highly distributed depolarizing cortical sensory responses, which began in the primary somatosensory barrel cortex and subsequently excited the whisker motor cortex. The spread of sensory information to motor cortex was dynamically regulated by behavior and correlated with the generation of sensory-evoked whisker movement. Sensory processing in motor cortex may therefore contribute significantly to active tactile sensory perception.  相似文献   

13.
Prelingually deafened children with cochlear implants stand a good chance of developing satisfactory speech performance. Nevertheless, their eventual language performance is highly variable and not fully explainable by the duration of deafness and hearing experience. In this study, two groups of cochlear implant users (CI groups) with very good basic hearing abilities but non-overlapping speech performance (very good or very bad speech performance) were matched according to hearing age and age at implantation. We assessed whether these CI groups differed with regard to their phoneme discrimination ability and auditory sensory memory capacity, as suggested by earlier studies. These functions were measured behaviorally and with the Mismatch Negativity (MMN). Phoneme discrimination ability was comparable in the CI group of good performers and matched healthy controls, which were both better than the bad performers. Source analyses revealed larger MMN activity (155–225 ms) in good than in bad performers, which was generated in the frontal cortex and positively correlated with measures of working memory. For the bad performers, this was followed by an increased activation of left temporal regions from 225 to 250 ms with a focus on the auditory cortex. These results indicate that the two CI groups developed different auditory speech processing strategies and stress the role of phonological functions of auditory sensory memory and the prefrontal cortex in positively developing speech perception and production.  相似文献   

14.

Background

Recent research has addressed the suppression of cortical sensory responses to altered auditory feedback that occurs at utterance onset regarding speech. However, there is reason to assume that the mechanisms underlying sensorimotor processing at mid-utterance are different than those involved in sensorimotor control at utterance onset. The present study attempted to examine the dynamics of event-related potentials (ERPs) to different acoustic versions of auditory feedback at mid-utterance.

Methodology/Principal findings

Subjects produced a vowel sound while hearing their pitch-shifted voice (100 cents), a sum of their vocalization and pure tones, or a sum of their vocalization and white noise at mid-utterance via headphones. Subjects also passively listened to playback of what they heard during active vocalization. Cortical ERPs were recorded in response to different acoustic versions of feedback changes during both active vocalization and passive listening. The results showed that, relative to passive listening, active vocalization yielded enhanced P2 responses to the 100 cents pitch shifts, whereas suppression effects of P2 responses were observed when voice auditory feedback was distorted by pure tones or white noise.

Conclusion/Significance

The present findings, for the first time, demonstrate a dynamic modulation of cortical activity as a function of the quality of acoustic feedback at mid-utterance, suggesting that auditory cortical responses can be enhanced or suppressed to distinguish self-produced speech from externally-produced sounds.  相似文献   

15.
An increased listing effort represents a major problem in humans with hearing impairment. Neurodiagnostic methods for an objective listening effort estimation might support hearing instrument fitting procedures. However the cognitive neurodynamics of listening effort is far from being understood and its neural correlates have not been identified yet. In this paper we analyze the cognitive neurodynamics of listening effort by using methods of forward neurophysical modeling and time-scale electroencephalographic neurodiagnostics. In particular, we present a forward neurophysical model for auditory late responses (ALRs) as large-scale listening effort correlates. Here endogenously driven top–down projections related to listening effort are mapped to corticothalamic feedback pathways which were analyzed for the selective attention neurodynamics before. We show that this model represents well the time-scale phase stability analysis of experimental electroencephalographic data from auditory discrimination paradigms. It is concluded that the proposed neurophysical and neuropsychological framework is appropriate for the analysis of listening effort and might help to develop objective electroencephalographic methods for its estimation in future.  相似文献   

16.
Zatorre RJ 《Neuron》2001,31(1):13-14
Primary sensory cortices are generally thought to be devoted to one sensory modality-vision, hearing, or touch, for example. Surprising interactions between these sensory modes have recently been reported. One example demonstrates that people with cochlear implants show increased activity in visual cortex when listening to speech; this may be related to enhanced lipreading ability.  相似文献   

17.
Nasir SM  Ostry DJ 《Current biology : CB》2006,16(19):1918-1923
Speech production is dependent on both auditory and somatosensory feedback. Although audition may appear to be the dominant sensory modality in speech production, somatosensory information plays a role that extends from brainstem responses to cortical control. Accordingly, the motor commands that underlie speech movements may have somatosensory as well as auditory goals. Here we provide evidence that, independent of the acoustics, somatosensory information is central to achieving the precision requirements of speech movements. We were able to dissociate auditory and somatosensory feedback by using a robotic device that altered the jaw's motion path, and hence proprioception, without affecting speech acoustics. The loads were designed to target either the consonant- or vowel-related portion of an utterance because these are the major sound categories in speech. We found that, even in the absence of any effect on the acoustics, with learning subjects corrected to an equal extent for both kinds of loads. This finding suggests that there are comparable somatosensory precision requirements for both kinds of speech sounds. We provide experimental evidence that the neural control of stiffness or impedance--the resistance to displacement--provides for somatosensory precision in speech production.  相似文献   

18.
Although individuals with autism are known to have significant communication problems, the cellular mechanisms responsible for impaired communication are poorly understood. Valproic acid (VPA) is an anticonvulsant that is a known risk factor for autism in prenatally exposed children. Prenatal VPA exposure in rats causes numerous neural and behavioral abnormalities that mimic autism. We predicted that VPA exposure may lead to auditory processing impairments which may contribute to the deficits in communication observed in individuals with autism. In this study, we document auditory cortex responses in rats prenatally exposed to VPA. We recorded local field potentials and multiunit responses to speech sounds in primary auditory cortex, anterior auditory field, ventral auditory field. and posterior auditory field in VPA exposed and control rats. Prenatal VPA exposure severely degrades the precise spatiotemporal patterns evoked by speech sounds in secondary, but not primary auditory cortex. This result parallels findings in humans and suggests that secondary auditory fields may be more sensitive to environmental disturbances and may provide insight into possible mechanisms related to auditory deficits in individuals with autism. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 972–986, 2014  相似文献   

19.
Hasson U  Skipper JI  Nusbaum HC  Small SL 《Neuron》2007,56(6):1116-1126
Is there a neural representation of speech that transcends its sensory properties? Using fMRI, we investigated whether there are brain areas where neural activity during observation of sublexical audiovisual input corresponds to a listener's speech percept (what is "heard") independent of the sensory properties of the input. A target audiovisual stimulus was preceded by stimuli that (1) shared the target's auditory features (auditory overlap), (2) shared the target's visual features (visual overlap), or (3) shared neither the target's auditory or visual features but were perceived as the target (perceptual overlap). In two left-hemisphere regions (pars opercularis, planum polare), the target invoked less activity when it was preceded by the perceptually overlapping stimulus than when preceded by stimuli that shared one of its sensory components. This pattern of neural facilitation indicates that these regions code sublexical speech at an abstract level corresponding to that of the speech percept.  相似文献   

20.
听觉皮层信号处理   总被引:1,自引:0,他引:1  
王晓勤 《生命科学》2009,(2):216-221
听觉系统和视觉系统的不同之处在于:听觉系统在外周感受器和听皮层间具有更长的皮层下通路和更多的突触联系。该特殊结构反应了听觉系统从复杂听觉环境中提取与行为相关信号的机制与其他感觉系统不同。听皮层神经信号处理包括两种重要的转换机制,声音信号的非同构转换以及从声音感受到知觉层面的转换。听觉皮层神经编码机制同时也受到听觉反馈和语言或发声过程中发声信号的调控。听觉神经科学家和生物医学工程师所面临的挑战便是如何去理解大脑中这些转换的编码机制。我将会用我实验室最近的一些发现来阐述听觉信号是如何在原听皮层中进行处理的,并讨论其对于言语和音乐在大脑中的处理机制以及设计神经替代装置诸如电子耳蜗的意义。我们使用了结合神经电生理技术和量化工程学的方法来研究这些问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号