首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To investigate the activity of cortical regions in the control of movement, we studied event-related desynchronization/synchronization (ERD/ERS), event-related coherence (ERC), and phase coherence in 29-channel EEGs from 9 subjects performing self-paced movements of the right index finger. Movement preparation and execution produced ERD over the sensorimotor areas at 10 Hz and 20 Hz, followed by ERS. ERD corresponded spatiotemporally to an increase in coherence over the frontocentral areas. For both frequency bands, ERD began over the left sensorimotor areas and became bilateral at the time of movement onset. The coherence increase with frontal areas began in the left central areas and became symmetrical after EMG onset. The ERD and coherence increase was longer at 10 Hz than at 20 Hz. Phase coherence at 10 Hz showed a lead of anterior regions to posterior regions throughout the time period, and at 20 Hz showed a tendency toward zero phase delay corresponding with the movement. EEG desynchronization parallels functional coupling over sensorimotor and frontal areas. Event-related coherence and phase coherence findings implicate the frontal lobes in control of movement planning and execution. The involvement of different frequency bands with different timings may represent parallel changes in the cortical network.  相似文献   

2.
Up to now, mechanisms of neurovisceral integration are not clear. The main objective of the present investigation consisted in studying cortical concomitants of sympathetic activity during emotional perception. The 62-channel EEG and skin conductance response (SCR) were recorded while right-handed healthy participants (n-33) viewed sequentially presented neutral, pleasant, and unpleasant pictures. The event-related synchronization (ERS) and desynchronization were measured in different frequency bands. Relying on median split of SCR amplitudes elicited by the presented stimuli the participants were segregated into groups with low (SCR-) and high (SCR+) autonomous activity. In was revealed that group differences were associated with power changes in the low (4-6 Hz) theta band only. For both groups in the early test period (up to 1 s after stimulus onset), emotional vs. neutral stimuli induced larger theta-ERS over posterior cortical regions with greater impact on the right parieto-temporo-occipital regions. At the later phases (2-6 s after stimulus onset), only the SCR group retained emotion-related greater right hemisphere synchronization. It is concluded that the right parieto-temporo-occipital cortex mediates mechanisms of motivated attention and sympathetic activation.  相似文献   

3.
During preparation, execution and recovery from simple movements, the EEG power spectrum undergoes a sequence of changes. The power in the beta band (13-25 Hz) decreases during preparation and execution of movement, but during recovery it reaches a level higher than that in the reference period (not affected by the event). These effects are known as event-related beta desynchronization and beta rebound. The power in the gamma band (>30 Hz) increases significantly just before the onset of the movement. This effect is known as event-related gamma synchronization. There are numerous observations concerning these effects but the underlying physiological mechanisms and functional role are not clear. We propose a lumped computational model of a cortical circuit. The model consists only of a pyramidal and an interneuronal population. Each population represents averaged properties of constituting neurons. The output of the model represents a local field potential, with a power spectrum peak either in the beta or in the gamma band. The model elucidates the mechanisms of transition between slower and faster rhythms, gamma synchronization and beta desynchronization and rebound effects. The sufficient conditions to observe the effects in the model are changes of the external excitation level and of the connection strength between excitatory and inhibitory populations attributed to short-time plasticity. The present model presents the role of the pyramidal neurons to interneuron connection in the oscillatory behavior of the two populations. We conclude that the pronounced facilitation of the pyramidal to fast spiking interneuron connections, initiated by robust excitation of the motor cortex neurons, may be essential for the effect of beta rebound. Further experiments concerning short-time plasticity during behavioral tasks would be of great value in studies of functional local cortical circuits.  相似文献   

4.
Event-related desynchronization (ERD) and synchronization (ERS) in response to neutral, positive and negative emotional IAPS stimuli were measured in narrow theta, alpha-1, alpha-2 and alpha-3 frequency bands in 22 healthy Ss. A high resolution 62-channel EEG was recorded while subjects viewed a sequence of pictures. The effects of valence discrimination related to hemispheric asymmetries are associated with increased theta and alpha-3 synchronization. Theta ERS revealed a significant valence by hemisphere interaction for anterior temporal leads in the time window of 100-700 ms after stimulus onset indicating a relatively greater right hemisphere ERS for negative and a left hemisphere ERS for positive stimuli in comparison to neutral those. In the alpha-3 band, negative stimuli induced a left hemisphere ERS increase (F7 site) in the time window of 800-1200 ms not observed for neutral and positive stimuli. The results obtained along with the earlier observations on EEG correlates of affective processing challenge the notion that effective anterior hemispheric asymmetries are reflected mainly in the wide alpha frequency band.  相似文献   

5.
The 62-channel EEG was recorded while low (LA, n = 18) and high (HA, n = 18) trait-anxious subjects viewed sequentially presented neutral, threatening and pleasant IAPS stimuli. Event-related desynchronization (ERD) and synchronization (ERS) were studied in the delta, theta1, theta2, alpha1, alpha2, beta1, beta2, beta3, and gamma frequency bands. Between-group differences, related to stimulus emotionality, were linked to theta1 and theta2 bands. In the low theta at prefrontal sites in the test period of 100-700 ms after stimulus onset HA exhibited relative predominance of the left hemisphere in response to both threatening and pleasant stimuli, whereas LA yielded larger right than left hemisphere activity in response to all the three stimulus categories. In the upper theta band between group differences were associated with posterior cortical regions and the test period of 0-1000 ms after stimulus onset: HA exhibited the largest ERS to threatening, whereas LA prompted the largest ERS to pleasant stimuli. Finally, according to the ERD data, in the alpha1 band HA participants in comparison with LA revealed enhanced left hemisphere activation in response to all the stimulus categories. It is suggested that as it is indexed by theta-ERS relative predominance of the left hemisphere at prefrontal sites along with the largest bilateral activity of posterior cortical regions (i.e., enhanced higher order visual processing) to threatening stimuli could form the basis for general bias towards threatening information in HA at the very early stages of emotional processing.  相似文献   

6.
Event-related synchronization (ERS) and desynchronization (ERD) in delta, theta1, theta2, alpha1, alpha2, beta1, beta2, beta3, and gamma were measured in 20 healthy right-handed subjects in response to IAPS stimuli with low, moderate, and high arousal reactions. The 62-channel EEG was simultaneously recorded while subjects viewed sequentially presented pictures and subjectively rated them after each presentation. The results show that emotionally loaded stimuli induced higher ERS in the delta, theta1, theta2, beta1, beta3, and gamma bands along with combined ERD and ERS effects in alpha2 band. As to hemispheric asymmetries, the effects of emotional arousal were restricted not only to right parietal (theta1 and theta2 ERS, alpha2 ERD) but also to left frontal (theta2 ERS) regions. In terms of affective chronometry, lower theta was the first to catch the affective salience of incoming stimuli (time window 0-600 ms after the stimulus input). For theta2, alpha2, and gamma bands this process was delayed to 600-1000 ms.  相似文献   

7.
8.
In humans, theta band (5-7 Hz) power typically increases when performing cognitively demanding working memory (WM) tasks, and simultaneous EEG-fMRI recordings have revealed an inverse relationship between theta power and the BOLD (blood oxygen level dependent) signal in the default mode network during WM. However, synchronization also plays a fundamental role in cognitive processing, and the level of theta and higher frequency band synchronization is modulated during WM. Yet, little is known about the link between BOLD, EEG power, and EEG synchronization during WM, and how these measures develop with human brain maturation or relate to behavioral changes. We examined EEG-BOLD signal correlations from 18 young adults and 15 school-aged children for age-dependent effects during a load-modulated Sternberg WM task. Frontal load (in-)dependent EEG theta power was significantly enhanced in children compared to adults, while adults showed stronger fMRI load effects. Children demonstrated a stronger negative correlation between global theta power and the BOLD signal in the default mode network relative to adults. Therefore, we conclude that theta power mediates the suppression of a task-irrelevant network. We further conclude that children suppress this network even more than adults, probably from an increased level of task-preparedness to compensate for not fully mature cognitive functions, reflected in lower response accuracy and increased reaction time. In contrast to power, correlations between instantaneous theta global field synchronization and the BOLD signal were exclusively positive in both age groups but only significant in adults in the frontal-parietal and posterior cingulate cortices. Furthermore, theta synchronization was weaker in children and was--in contrast to EEG power--positively correlated with response accuracy in both age groups. In summary we conclude that theta EEG-BOLD signal correlations differ between spectral power and synchronization and that these opposite correlations with different distributions undergo similar and significant neuronal developments with brain maturation.  相似文献   

9.
The goal of this study is to quantify and determine the way in which the emotional response to music is reflected in the electrical activities of the brain. When the power spectrum of sequences of musical notes is inversely proportional to the frequency on a log-log plot, we call it 1/f music. According to previous research, most listeners agree that 1/f music is much more pleasing than white (1/f 0) or brown (1/f 2) music. Based on these studies, we used nonlinear methods to investigate the chaotic dynamics of electroencephalograms (EEGs) elicited by computer-generated 1/f music, white music, and brown music. In this analysis, we used the correlation dimension and the largest Lyapunov exponent as measures of complexity and chaos. We developed a new method that is strikingly faster and more accurate than other algorithms for calculating the nonlinear invariant measures from limited noisy data. At the right temporal lobe, 1/f music elicited lower values of both the correlation dimension and the largest Lyapunov exponent than white or brown music. We observed that brains which feel more pleased show decreased chaotic electrophysiological behavior. By observing that the nonlinear invariant measures for the 1/f distribution of the rhythm with the melody kept constant are lower than those for the 1/f distribution of melody with the rhythm kept constant, we could conclude that the rhythm variations contribute much more to a pleasing response to music than the melody variations do. These results support the assumption that chaos plays an important role in brain function, especially emotion. Received: 30 December 1996 / Accepted in revised form: 18 December 1997  相似文献   

10.
Neurophysiological basis of gender differences in the dynamics of asymmetry in retrieval of dychotically presented verbal information was studied by mapping of EEG power and coherence during a prolonged dychotical test. Right-handed students (20 men and 11 women) participated in the experiments. It was shown that gender differences in the EEG were absent at the initial stage of testing and appeared at the final stage. At this stage, the asymmetry of the theta 2 EEG power was lower in men than in women, while the interhemispheric coherence in the theta 2- and alpha 1-bands was more pronounced in women than in men, mainly, in the caudal cortical regions. Thus, different cortical electrophysiological processes underlie similar behavioral effects (the same values of asymmetry coefficients of retrieval of syllables at the final stage of dichotic testing) in men and women.  相似文献   

11.
We used a new methodological approach to the evaluation of EEG synchronization based on correlation between amplitude modulation processes (EEG envelopes). We revealed: left-hemispheric dominance and dominance of frontal over occipital regions characteristic of all sleep stages; differences in synchronization in frequency bands and their patterns characteristic of a specific sleep stage; stage-dependent differences in inter-hemispheric synchrony and patterns of their changes from the frontal to occipital regions; and stage-dependent topographical distributions of high synchronization foci with respect to frequency domains. Analysis of amplitude topography also revealed left-hemispheric dominance and many significant differences in activity distribution patterns over parasagittal chains of electrodes (meridians) depending on sleep stages and frequency domains. The combination of EEG synchrony estimates with the amplitude spectral estimates made it possible to perform a reliable discriminant recognition of five sleep stages with errors in the range of 3-20%.  相似文献   

12.
13.
14.
Time-of-day effects of ethanol consumption on EEG topography and cognitive event-related potential in adult males were studied. Ethanol (0.5 g/kg) or control drink was orally administered to nine healthy males at 10:00 and 18:00. The alpha 2 amplitude was significantly lower than that of the control at 0.5, 2.5 and 4.5 hours after ethanol consumption in the morning. These effects were observed in the left hemisphere and were only found after consumption in the morning. The subjectively rated attention was significantly lower than that of the control at 0.5 and 2.5 hours after ethanol consumption in the morning and at 0.5 hours after ethanol consumption in the evening. In contrast, the search speed of serial search task and P300 amplitude was significantly lower than that of the control at 2.5 hours after ethanol consumption in the evening. These results demonstrate that effects of ethanol are dependent on time-of-day of consumption. Ethanol consumption significantly lowered the alpha 2 amplitude when consumed in the morning, and lowered P300 amplitude when consumed in the evening.  相似文献   

15.
Features of neurophysiological organization of two main thinking types playing different roles in creative processes, i.e., divergent and convergent were studied with participation of 30 right-handed male subjects at the age from 30 to 50 years. Two tests were presented: (1) creation of many visual images on the basis of two simple geometrical figures (the model of divergent thinking) and (2) classification of a figure element with one of the offered standard samples (convergent thinking). The number of created images or correctly classified elements for five minutes served a criterion of performance productivity. It was found that performance of the divergent test with high productivity (as compared to low productivity) was characterized by a greater increase in non-linear interactions between the cortical potentials, especially in the axis right frontal--left occipital areas. At the same time, under conditions of high productivity, the number of active narrow-frequency spectral-coherent EEG bands increased. The data confirm the notion of neurophysiological organization of creative processes, according to which creative processes require the intensification of retrieval operations (both conscious and unconscious), based on extensive interhemispheric interaction and involvement of a system of EEG coherent structures oscillating with different frequencies.  相似文献   

16.
Horiguchi R  Dohra H  Tokumoto T 《Proteomics》2006,6(14):4195-4202
Proteasomes are large, multi-subunit particles that act as the proteolytic machinery for most of the regulated intracellular protein degradation in eukaryotic cells. An alteration of proteasome function may be important for the regulation of the meiotic cell cycle. To study the change at the subunit level of the 26S proteasome during meiotic maturation, we purified 26S proteasomes from immature and mature oocytes of goldfish. Two-dimensional polyacrylamide gel electrophoresis was used to separate proteins. For differential analysis, whole spots of the 26S proteasome from goldfish oocytes were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and database analysis. Four spots that were different (only detected in mature oocyte 265 proteasomes and not in immature ones) and four protein spots that were up- or down-regulated were identified unambiguously. The mature-specific spots were not 26S proteasome components but rather their interacting proteins, and were identified as chaperonin-containing TCP-1 subunits and myosin light chain. Minor spots of three subunits of the 20S core particle and one of the 19S regulatory particle showed meiotic cell cycle-dependent changes. These results demonstrate that modifications of proteasomal subunits and cell cycle phase-dependent interactions of proteins with proteasomes occur during oocyte maturation in goldfish.  相似文献   

17.
To gain a deeper insight into the relationship between the electrogenesis and oxygenation of the brain, fMRI and EEG reactions to identical functional loads (opening of the eyes and right- and left-hand fingering) were compared in 11 young right-handed healthy subjects with statistical techniques. Changes in power, frequency and coherent EEG parameters obtained by 18-channel monopolar recording were compared with values of + BOLD-fMRI response, calculated for 18 corresponding cortical areas on the basis of application of the "virtual cap" by the original algorithm. In reactive changes of both hemodynamic and bioelectrical parameters, sets of independent factors were identified, which were regarded on the basis of their topography as specific (localized in the cortical representation ofa relevant analyzer) and nonspecific (diffuse and similar under different functional loads). Specific component dominated in the fMRI response, whereas non-specific component was characteristic of the EEG reaction. The similar topography of reactive fMRI and EEG factors under normal conditions, confirmed by the correlation analysis, reflects the multilevel character of the systemic organization of the brain activity, visualized, in particular, in the sagittal projections of the individual fMRI images. Each of the reactive EEG factors included all of the EEG quantitative characteristics. EEG coherence, which dominated among other parameters (with a local increase in the cortical representation of a relevant analyzer and a diffuse decrease in the areas of the influence of the regulatory structures) displayed the highest correlation with hemodynamic responses of the brain.  相似文献   

18.
Statistical analysis of EEG spectra averaged over 10-min periods showed that inhibitor of acetylcholinesterase physostigmine induced the long-term (tens of minutes) characteristic changes in the electric activity of the dorsal hippocampus (CA1 field) and somatosensory cortex of unrestrained rats. With increasing the physostigmine dose from 0.05 to 0.5 or 1 mg/kg the averaged power of the theta-rhythm did not rise in the range of 3.6-4.9 Hz and was suppressed in the range of 5.7-11.9 Hz both in the hippocampus and neocortex. The maximal frequency shifted to the left (from 3.6-6.4 to 3.6-4.9 Hz). In contrast to this, the averaged power in the delta (1-1.5 Hz)-I and beta-2 ranges (20.3-26.5 Hz) significantly nonlinearly increased and that of the beta-1 substantially decreased. Scopolamine eliminated all extrema of the hippocampal and neocortical EEG spectra induced by physostigmine, which is indicative of the role of M-cholinoreceptors in these effects. The increased dose of physostigmine (1 mg/kg) produced inversion of the ratio between the averaged power of beta-2 in neocortex and hippocampus: it became significantly higher than in the neocortex. All these data suggest that the mechanisms of cholinergic modulation of the theta- and beta-rhythms are essentially different. We think that significant enhancement of the content of endogenous acetylcholine content produce a long-term tonic decay of the functional activity of the hippocampus and neocortex and play an important role in the mechanisms of dissociated states of memory and consciousness, contextual learning and conditioned switching.  相似文献   

19.
20.
Features of EEG pattern during verbal creative thinking depending on experimental instruction were studied in men and women. Spectral power density was analyzed in six frequency bands (4-30 Hz). Performance of a creative task produced an increase in the power of theta (4-6 Hz) and beta2 (20-40 Hz) components and decrease in the power of alpha (8-13 Hz) and betal (13-20 Hz). Changes in the alpha and betal bands were observed, predominantly, in the posterior areas, whereas power of the thetal and beta2 bands increased in the anterior areas. Independently of instruction, women demonstrated greater synchronization in the theta1 band than men, whereas in men the desynchronization in the alpha2 band (10-13 Hz) was more pronounced. When the subjects were instructed to create original sentences, a widespread decrease in the EEG power was observed in the band of 8-30 Hz as compared to instruction "to create sentences". Thus, the instruction-related changes in EEG power were not gender-specific. They may reflect neural activity mediating selective attention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号