首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hongmei Gong 《BBA》2008,1777(6):488-495
PSII activity was inhibited after Spirulina platensis cells were incubated with different salt concentrations (0-0.8 M NaCl) for 12 h. Flash-induced fluorescence kinetics showed that in the absence of DCMU, the half time of the fast and slow components decreased while that of the middle component increased considerably with increasing salt concentration. In the presence of DCMU, fluorescence relaxation was dominated by a 0.6s component in control cells. After salt stress, this was partially replaced by a faster new component with half time of 20-50 ms. Thermoluminescence measurements revealed that S2QA and S2QB recombinations were shifted to higher temperatures in parallel and the intensities of the thermoluminescence emissions were significantly reduced in salt-stressed cells. The period-four oscillation of the thermoluminescence B band was highly damped. There were no significant changes in contents of CP47, CP43, cytochrome c550, and D1 proteins. However, content of the PsbO protein in thylakoid fraction decreased but increased significantly in soluble fraction. The results suggest that salt stress leads to a modification of the QB niche at the acceptor side and an increase in the stability of the S2 state at the donor side, which is associated with a dissociation of the PsbO protein.  相似文献   

2.
Interfering RNA was used to suppress simultaneously the expression of the four genes which encode the PsbO and PsbP proteins of Photosystem II in Arabidopsis (PsbO: At5g66570, At3g50820 and PsbP: At1g06680, At2g30790). A phenotypic series of transgenic plants was obtained that expressed variable amounts of the PsbO proteins and undetectable amounts of the PsbP proteins. Immunological studies indicated that the loss of PsbP expression was correlated with the loss of expression of the PsbQ, D2, and CP47 proteins, while the loss of PsbO expression was correlated with the loss of expression of the D1 and CP43 proteins. Q(A)(-) reoxidation kinetics in the absence of DCMU indicated that the slowing of electron transfer from Q(A)(-) to Q(B) was correlated with the loss of the PsbP protein. Q(A)(-) reoxidation kinetics in the presence of DCMU indicated that charge recombination between Q(A)(-) and donor side components of the photosystem was retarded in all of the mutants. Decreasing amounts of the PsbO protein in the absence of the PsbP component also led to a progressive loss of variable fluorescence yield (F(V)/F(M)). During fluorescence induction, the loss of PsbP was correlated with a more rapid O to J transition and a loss of the J to I transition. These results indicate that the losses of the PsbO and PsbP proteins differentially affect separate protein components and different PS II functions and can do so, apparently, in the same plant.  相似文献   

3.
Arginine257 (R257), in the de-helix that caps the Q(B) site of the D1 protein, has been shown by mutational studies to play a key role in the sensitivity of Photosystem II (PS II) to bicarbonate-reversible binding of the formate anion. In this article, the role of this residue has been further investigated through D1 mutations (R257E, R257Q, and R257K) in Chlamydomonas reinhardtii. We have investigated the activity of the Q(B) site by studying differences from wild type on the steady-state turnover of PS II, as assayed through chlorophyll (Chl) a fluorescence yield decay after flash excitation. The effects of p-benzoquinone (BQ, which oxidizes reduced Q(B), Q(B)(-) ) and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU, which blocks electron flow from Q(A)(-) to Q(B)) were measured. The equilibrium constants of the two-electron gate were obtained through thermoluminescence measurements. The thermoluminescence properties were changed in the mutants, especially when observed after pretreatment with 100 microM BQ. A theoretical analysis of the thermoluminescence data, based mainly on the recombination pathways model of Rappaport et al. (2005), led to the conclusion that the free-energy difference for the recombination of Q(B)(-) with S(2) was reduced by 20-40 mV in the three mutants (D1-R257K, D1-R257Q, and D1-R257E); this was interpreted to be due to a lowering of the redox potential of Q(B)/Q(B)(-). Further, since the recombination of Q(A)(-) with S(2) was unaffected, we suggest that no significant change in redox potential of Q(A)/Q(A)(-) occurred in these three mutants. The maximum variable Chl a fluorescence yield is lowered in the mutants, in the order R257K > R257Q > R257E, compared to wild type. Our analysis of the binary oscillations in Chl a fluorescence following pretreatment of cells with BQ showed that turnover of the Q(B) site was relatively unaffected in the three mutants. The mutant D1-R257E had the lowest growth rate and steady-state activity and showed the weakest binary oscillations. We conclude that the size and the charge of the amino acid at the position D1-257 play a role in PS II function by modulating the effective redox potential of the Q(B)/Q(B)(-) pair. We discuss an indirect mechanism mediated through electrostatic and/or surface charge effects and the possibility of more pleiotropic effects arising from decreased stability of the D1/D2 and D1/CP47 interfaces.  相似文献   

4.
I Vass  D Kirilovsky  A L Etienne 《Biochemistry》1999,38(39):12786-12794
We studied the effect of UV-B radiation (280-320 nm) on the donor- and acceptor-side components of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803 by measuring the relaxation of flash-induced variable chlorophyll fluorescence. UV-B irradiation increases the t(1/2) of the decay components assigned to reoxidation of Q(A)(-) by Q(B) from 220 to 330 micros in centers which have the Q(B) site occupied, and from 3 to 6 ms in centers with the Q(B) site empty. In contrast, the t(1/2) of the slow component arising from recombination of the Q(A)Q(B)(-) state with the S(2) state of the water-oxidizing complex decreases from 13 to 1-2 s. In the presence of DCMU, fluorescence relaxation in nonirradiated cells is dominated by a 0.5-0.6 s component, which reflects Q(A)(-) recombination with the S(2) state. After UV-B irradiation, this is partially replaced by much faster components (t(1/2) approximately 800-900 micros and 8-10 ms) arising from recombination of Q(A)(-) with stabilized intermediate photosystem II donors, P680(+) and Tyr-Z(+). Measurement of fluorescence relaxation in the presence of different concentrations of DCMU revealed a 4-6-fold increase in the half-inhibitory concentration for electron transfer from Q(A) to Q(B). UV-B irradiation in the presence of DCMU reduces Q(A) in the majority (60%) of centers, but does not enhance the extent of UV-B damage beyond the level seen in the absence of DCMU, when Q(A) is mostly oxidized. Illumination with white light during UV-B treatment retards the inactivation of PSII. However, this ameliorating effect is not observed if de novo protein synthesis is blocked by lincomycin. We conclude that in intact cyanobacterium cells UV-B light impairs electron transfer from the Mn cluster of water oxidation to Tyr-Z(+) and P680(+) in the same way that has been observed in isolated systems. The donor-side damage of PSII is accompanied by a modification of the Q(B) site, which affects the binding of plastoquinone and electron transport inhibitors, but is not related to the presence of Q(A)(-). White light, at the intensity applied for culturing the cells, provides protection against UV-B-induced damage by enhancing protein synthesis-dependent repair of PSII.  相似文献   

5.
The functional state of the Photosystem (PS) II complex in Arabidopsis psbR T-DNA insertion mutant was studied. The DeltaPsbR thylakoids showed about 34% less oxygen evolution than WT, which correlates with the amounts of PSII estimated from Y(D)(ox) radical EPR signal. The increased time constant of the slow phase of flash fluorescence (FF)-relaxation and upshift in the peak position of the main TL-bands, both in the presence and in the absence of DCMU, confirmed that the S(2)Q(A)(-) and S(2)Q(B)(-) charge recombinations were stabilized in DeltaPsbR thylakoids. Furthermore, the higher amount of dark oxidized Cyt-b559 and the increased proportion of fluorescence, which did not decay during the 100s time span of the measurement thus indicating higher amount of Y(D)(+)Q(A)(-) recombination, pointed to the donor side modifications in DeltaPsbR. EPR measurements revealed that S(1)-to-S(2)-transition and S(2)-state multiline signal were not affected by mutation. The fast phase of the FF-relaxation in the absence of DCMU was significantly slowed down with concomitant decrease in the relative amplitude of this phase, indicating a modification in Q(A) to Q(B) electron transfer in DeltaPsbR thylakoids. It is concluded that the lack of the PsbR protein modifies both the donor and the acceptor side of the PSII complex.  相似文献   

6.
The Ala344 residue of the D1 protein has been identified as a crucial residue of the catalytic cluster of the water-oxidizing complex, however, its function has not been fully clarified. Here we have used thermoluminescence and flash-induced chlorophyll fluorescence measurements to characterize the effect of the D1-Ala344stop mutation on the electron transport of Photosystem II in intact cells of the cyanobacterium Synechocystis 6803. Although the mutant cannot grow photoautotrophically it shows flash-induced thermoluminescence and chlorophyll fluorescence signals reflecting the stabilization of negative and positive charges on the Q(A) and Q(B) quinone electron acceptors, and stable Photosystem II donors, respectively. Decay of flash induced chlorophyll fluorescence yield is multiphasic in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), with 6 ms, 350 ms, and 26 s time constants. When cells are illuminated with repetitive flashes, fired at 1 ms intervals, the 6 ms phase is gradually decreased with the concomitant increase of the 350 ms phase. After 45 min dark adaptation of mutant cells the 6 ms and 350 ms phases were significantly decreased and a very slow decaying component was formed. Flash induced oscillation of the thermoluminescence B band, which reflects the redox cycling of the water-oxidizing complex in the wild-type cells, was completely abolished in the D1-Ala344stop mutant. The results demonstrate that low efficiency photooxidation of Mn occurs in about 60% of the PSII centers. The photooxidizable Mn is unstable in the dark, and formation of higher S states is inhibited. In addition, the Q(A) to Q(B) electron transfer step is slowed down as an indirect consequence of the donor side modification. Our data indicate that the stabilization of a Mn ion by the alpha-carboxylate chain of the D1-Ala344 residue might represent one of the final steps in the assembly of functional catalytic sites for water oxidation.  相似文献   

7.
The mechanism of charge recombination was studied in Photosystem II by using flash induced chlorophyll fluorescence and thermoluminescence measurements. The experiments were performed in intact cells of the cyanobacterium Synechocystis 6803 in which the redox properties of the primary pheophytin electron acceptor, Phe, the primary electron donor, P(680), and the first quinone electron acceptor, Q(A), were modified. In the D1Gln130Glu or D1His198Ala mutants, which shift the free energy of the primary radical pair to more positive values, charge recombination from the S(2)Q(A)(-) and S(2)Q(B)(-) states was accelerated relative to the wild type as shown by the faster decay of chlorophyll fluorescence yield, and the downshifted peak temperature of the thermoluminescence Q and B bands. The opposite effect, i.e. strong stabilization of charge recombination from both the S(2)Q(A)(-) and S(2)Q(B)(-) states was observed in the D1Gln130Leu or D1His198Lys mutants, which shift the free energy level of the primary radical pair to more negative values, as shown by the retarded decay of flash induced chlorophyll fluorescence and upshifted thermoluminescence peak temperatures. Importantly, these mutations caused a drastic change in the intensity of thermoluminescence, manifested by 8- and 22-fold increase in the D1Gln130Leu and D1His198Lys mutants, respectively, as well as by a 4- and 2.5-fold decrease in the D1Gln130Glu and D1His198Ala mutants, relative to the wild type, respectively. In the presence of the electron transport inhibitor bromoxynil, which decreases the redox potential of Q(A)/Q(A)(-) relative to that observed in the presence of DCMU, charge recombination from the S(2)Q(A)(-) state was accelerated in the wild type and all mutant strains. Our data confirm that in PSII the dominant pathway of charge recombination goes through the P(680)(+)Phe(-) radical pair. This indirect recombination is branched into radiative and non-radiative pathways, which proceed via repopulation of P(680)(*) from (1)[P(680)(+)Ph(-)] and direct recombination of the (3)[P(680)(+)Ph(-)] and (1)[P(680)(+)Ph(-)] radical states, respectively. An additional non-radiative pathway involves direct recombination of P(680)(+)Q(A)(-). The yield of these charge recombination pathways is affected by the free energy gaps between the Photosystem II electron transfer components in a complex way: Increase of DeltaG(P(680)(*)<-->P(680)(+)Phe(-)) decreases the yield of the indirect radiative pathway (in the 22-0.2% range). On the other hand, increase of DeltaG(P(680)(+)Phe(-)<-->P(680)(+)Q(A)(-)) increases the yield of the direct pathway (in the 2-50% range) and decreases the yield of the indirect non-radiative pathway (in the 97-37% range).  相似文献   

8.
The flash-induced thermoluminescence (TL) technique was used to investigate the action of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) on charge recombination in photosystem II (PSII). Addition of low concentrations (muM range) of TMPD to thylakoid samples strongly decreased the yield of TL emanating from S(2)Q(B)(-) and S(3)Q(B)(-) (B-band), S(2)Q(A)(-) (Q-band), and Y(D)(+)Q(A)(-) (C-band) charge pairs. Further, the temperature-dependent decline in the amplitude of chlorophyll fluorescence after a flash of white light was strongly retarded by TMPD when measured in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Though the period-four oscillation of the B-band emission was conserved in samples treated with TMPD, the flash-dependent yields (Y(n)) were strongly declined. This coincided with an upshift in the maximum yield of the B-band in the period-four oscillation to the next flash. The above characteristics were similar to the action of the ADRY agent, carbonylcyanide m-chlorophenylhydrazone (CCCP). Simulation of the B-band oscillation pattern using the integrated Joliot-Kok model of the S-state transitions and binary oscillations of Q(B) confirmed that TMPD decreased the initial population of PSII centers with an oxidized plastoquinone molecule in the Q(B) niche. It was deduced that the action of TMPD was similar to CCCP, TMPD being able to compete with plastoquinone for binding at the Q(B)-site and to reduce the higher S-states of the Mn cluster.  相似文献   

9.
Guo Y  Tan J 《Bio Systems》2009,95(2):98-103
In this research, we demonstrated that the plastoquinone-related electron-transport kinetics in photosynthesis could be sufficiently described with as few as three state variables, Q(A)(-), Q(B)(-), and Q(B)(2-). A third-order kinetic model structure was developed with delayed fluorescence as the measurable output. Delayed fluorescence emissions from drought-stressed, DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] treated, or healthy plants were measured with a photon-counting system and used to verify the model structure through nonlinear least-squares optimization. While there were no visible differences between the healthy and the stressed plants, the model showed an obvious decrease of Q(A) reduction rate in the drought-stressed samples and a clear decline of functional Q(A)Q(B) pairs in the DCMU-treated samples. The changes were consistent with the known mechanisms by which water and DCMU affect electron transport in photosynthetic plants. The results proved that the three-state formulation was a compact and practically useful model structure for describing delayed fluorescence from plants.  相似文献   

10.
Treatment with the herbicide acifluorfen-sodium (AF-Na), an inhibitor of protoporphyrinogen oxidase, caused an accumulation of protoporphyrin IX (Proto IX) , light-induced necrotic spots on the cucumber cotyledon within 12-24 h, and photobleaching after 48-72 h of light exposure. Proto IX-sensitized and singlet oxygen ((1)O(2))-mediated oxidative stress caused by AF-Na treatment impaired photosystem I (PSI), photosystem II (PSII) and whole chain electron transport reactions. As compared to controls, the F(v)/F(m) (variable to maximal chlorophyll a fluorescence) ratio of treated samples was reduced. The PSII electron donor NH(2)OH failed to restore the F(v)/F(m) ratio suggesting that the reduction of F(v)/F(m) reflects the loss of reaction center functions. This explanation is further supported by the practically near-similar loss of PSI and PSII activities. As revealed from the light saturation curve (rate of oxygen evolution as a function of light intensity), the reduction of PSII activity was both due to the reduction in the quantum yield at limiting light intensities and impairment of light-saturated electron transport. In treated cotyledons both the Q (due to recombination of Q(A)(-) with S(2)) and B (due to recombination of Q(B)(-) with S(2)/S(3)) band of thermoluminescence decreased by 50% suggesting a loss of active PSII reaction centers. In both the control and treated samples, the thermoluminescence yield of B band exhibited a periodicity of 4 suggesting normal functioning of the S states in centers that were still active. The low temperature (77 K) fluorescence emission spectra revealed that the F(695) band (that originates in CP-47) increased probably due to reduced energy transfer from the CP47 to the reaction center. These demonstrated an overall damage to the PSI and PSII reaction centers by (1)O(2) produced in response to photosensitization reaction of protoporphyrin IX in AF-Na-treated cucumber seedlings.  相似文献   

11.
The UV-A (320-400 nm) component of sunlight is a significant damaging factor of plant photosynthesis, which targets the photosystem II complex. Here we performed a detailed characterization of UV-A-induced damage in photosystem II membrane particles using EPR spectroscopy and chlorophyll fluorescence measurements. UV-A irradiation results in the rapid inhibition of oxygen evolution accompanied by the loss of the multiline EPR signal from the S(2) state of the water-oxidizing complex. Gradual decrease of EPR signals arising from the Q(A)(-)Fe(2+) acceptor complex, Tyr-D degrees, and the ferricyanide-induced oxidation of the non-heme Fe(2+) to Fe(3+) is also observed, but at a significantly slower rate than the inhibition of oxygen evolution and of the multiline signal. The amplitude of Signal II(fast), arising from Tyr-Z degrees in the absence of fast electron donation from the Mn cluster, was gradually increased during the course of UV-A treatment. However, the amount of functional Tyr-Z decreased to a similar extent as Tyr-D as shown by the loss of amplitude of Signal II(fast) that could be measured in the UV-A-treated particles after Tris washing. UV-A irradiation also affects the relaxation of flash-induced variable chlorophyll fluorescence. The amplitudes of the fast (600 micros) and slow (2 s) decaying components, assigned to reoxidation of Q(A)(-) by Q(B) and by recombination of (Q(A)Q(B))(-) with donor side components, respectively, decrease in favor of the 15-20 ms component, which reflects PQ binding to the Q(B) site. In the presence of DCMU, the fluorescence relaxation is dominated by a 1 s component due to recombination of Q(A)(-) with the S(2) state. After UV-A radiation, this is partially replaced by a much faster component (30-70 ms) arising from recombination of Q(A)(-) with a stabilized intermediate PSII donor, most likely Tyr-Z degrees. It is concluded that the primary damage site of UV-A irradiation is the catalytic manganese cluster of the water-oxidizing complex, where electron transfer to Tyr-Z degrees and P(680)(+) becomes inhibited. Modification and/or inactivation of the redox-active tyrosines and the Q(A)Fe(2+) acceptor complex are subsequent events. This damaging mechanism is very similar to that induced by the shorter wavelength UV-B (280-320) radiation, but different from that induced by the longer wavelength photosynthetically active light (400-700 nm).  相似文献   

12.
The photosystem II (PSII) complex of photosynthetic oxygen evolving membranes comprises a number of small proteins whose functions remain unknown. Here we report that the low molecular weight protein encoded by the psbJ gene is an intrinsic component of the PSII complex. Fluorescence kinetics, oxygen flash yield, and thermoluminescence measurements indicate that inactivation of the psbJ gene in Synechocystis 6803 cells and tobacco chloroplasts lowers PSII-mediated oxygen evolution activity and increases the lifetime of the reduced primary acceptor Q(A)(-) (more than a 100-fold in the tobacco DeltapsbJ mutant). The decay of the oxidized S(2,3) states of the oxygen-evolving complex is considerably accelerated, and the oscillations of the Q(B)(-)/S(2,3) recombination with the number of exciting flashes are damped. Thus, PSII can be assembled in the absence of PsbJ. However, the forward electron flow from Q(A)(-) to plastoquinone and back electron flow to the oxidized Mn cluster of the donor side are deregulated in the absence of PsbJ, thereby affecting the efficiency of PSII electron flow following the charge separation process.  相似文献   

13.
The redox potential of Q(A) in photosystem II (PSII) is known to be lower by approximately 100 mV in the presence of phenolic herbicides compared with the presence of DCMU-type herbicides. In this study, the structural basis underlying the herbicide effects on the Q(A) redox potential was studied using Fourier transform infrared (FTIR) spectroscopy. Light-induced Q(A)(-)/Q(A) FTIR difference spectra of Mn-depleted PSII membranes in the presence of DCMU, atrazine, terbutryn, and bromacil showed a strong CO stretching peak of Q(A)(-) at 1,479 cm(-1), while binding of phenolic herbicides, bromoxynil and ioxynil, induced a small but clear downshift by approximately 1 cm(-1). The CO peak positions and the small frequency difference were reproduced in the S(2)Q(A)(-)/S(1)Q(A) spectra of oxygen-evolving PSII membranes with DCMU and bromoxynil. The relationship of the CO frequency with herbicide species correlated well with that of the peak temperatures of thermoluminescence due to S(2)Q(A)(-) recombination. Density functional theory calculations of model hydrogen-bonded complexes of plastoquinone radical anion showed that the small shift of the CO frequency is consistent with a change in the hydrogen-bond structure most likely as a change in its strength. The Q(A)(-)/Q(A) spectra in the presence of bromoxynil, and ioxynil, which bear a nitrile group in the phenolic ring, also showed CN stretching bands around 2,210 cm(-1). Comparison with the CN frequencies of bromoxynil in solutions suggested that the phenolic herbicides take a phenotate anion form in the Q(B) pocket. It was proposed that interaction of the phenolic C-O(-) with D1-His215 changes the strength of the hydrogen bond between the CO of Q(A) with D2-His214 via the iron-histidine bridge, causing the decrease in the Q(A) redox potential.  相似文献   

14.
We studied the charge recombination characteristics of Photosystem II (PSII) redox components in whole cells of the chlorophyll (Chl) d-dominated cyanobacterium, Acaryochloris marina, by flash-induced chlorophyll fluorescence and thermoluminescence measurements. Flash-induced chlorophyll fluorescence decay was retarded in the mus and ms time ranges and accelerated in the s time range in Acaryochloris marina relative to that in the Chl a-containing cyanobacterium, Synechocystis PCC 6803. In the presence of 3-(3,4-dichlorophenyl)-1, 1-dimethylurea, which blocks the Q(B) site, the relaxation of fluorescence decay arising from S(2)Q(A)(-) recombination was somewhat faster in Acaryochloris marina than in Synechocystis PCC 6803. Thermoluminescence intensity of the so called B band, arising from the recombination of the S(2)Q(B)(-) charge separated state, was enhanced significantly (2.5 fold) on the basis of equal amounts of PSII in Acaryochloris marina as compared with Synechocystis 6803. Our data show that the energetics of charge recombination is modified in Acaryochloris marina leading to a approximately 15 meV decrease of the free energy gap between the Q(A) and Q(B) acceptors. In addition, the total free energy gap between the ground state and the excited state of the reaction center chlorophyll is at least approximately 25-30 meV smaller in Acaryochloris marina, suggesting that the primary donor species cannot consist entirely of Chl a in Acaryochloris marina, and there is a contribution from Chl d as well.  相似文献   

15.
The potential of photosynthesis to recover from winter stress was studied by following the thermoluminescence (TL) and chlorophyll fluorescence changes of winter pine needles during the exposure to room temperature (20 degrees C) and an irradiance of 100 micromol m(-2) s(-1). TL measurements of photosystem II (PSII) revealed that the S(2)Q(B)(-) charge recombinations (the B-band) were shifted to lower temperatures in winter pine needles, while the S(2)Q(A)(-) recombinations (the Q-band) remained close to 0 degrees C. This was accompanied by a drastically reduced (65%) PSII photochemical efficiency measured as F(v)/ F(m,) and a 20-fold faster rate of the fluorescence transient from F(o) to F(m) as compared to summer pine. A strong positive correlation between the increase in the photochemical efficiency of PSII and the increase in the relative contribution of the B-band was found during the time course of the recovery process. The seasonal dynamics of TL in Scots pine needles studied under field conditions revealed that between November and April, the contribution of the Q- and B-bands to the overall TL emission was very low (less than 5%). During spring, the relative contribution of the Q- and B-bands, corresponding to charge recombination events between the acceptor and donor sides of PSII, rapidly increased, reaching maximal values in late July. A sharp decline of the B-band was observed in late summer, followed by a gradual decrease, reaching minimal values in November. Possible mechanisms of the seasonally induced changes in the redox properties of S(2)/S(3)Q(B)(-) recombinations are discussed. It is proposed that the lowered redox potential of Q(B) in winter needles increases the population of Q(A)(-), thus enhancing the probability for non-radiative P680(+)Q(A)(-) recombination. This is suggested to enhance the radiationless dissipation of excess light within the PSII reaction center during cold acclimation and during cold winter periods.  相似文献   

16.
To study the function of the carboxyl-terminal domain of a photosystem II (PSII) reaction center polypeptide, D1, chloroplast mutants of the green alga Chlamydomonas reinhardtii have been generated in which Leu-343 and Ala-344 have been simultaneously or individually replaced by Phe and Ser, respectively. The mutants carrying these replacements individually, L343F and A344S, showed a wild-type phenotype. In contrast, the double mutant, L343FA344S, evolved O2 at only 20-30% of the wild-type rate and was unable to grow photosynthetically. In this mutant, PSII accumulated to 60% of the wild-type level, indicating that the O2-evolving activity per PSII was reduced to approximately half that of the wild-type. However, the amount of Mn atom detected in the thylakoids suggested that a normal amount of Mn cluster was assembled. An investigation of the kinetics of flash-induced fluorescence yield decay revealed that the electron transfer from Q(-)(A) to Q(B) was not affected. When a back electron transfer from Q(-)(A) to a donor component was measured in the presence of 3-(3,4-dichlorophenol)-1,1-dimethylurea, a significantly slower component of the Q(-)(A) oxidation was detected in addition to the normal component that corresponds to the back electron transfer from the Q(-)(A) to the S(2)-state of the Mn cluster. Thermoluminescence measurements revealed that L343FA344S cells contained two functionally distinct Mn clusters. One was equivalent to that of the wild-type, while the other was incapable of water oxidation and was able to advance the transition from the S(1)-state to the S(2)-state. These results suggested that a fraction of the Mn cluster had been impaired by the L343FA344S mutation, leading to decreased O2 evolution. We concluded that the structure of the C-terminus of D1 is critical for the formation of the Mn cluster that is capable of water oxidation, in particular, transition to higher S-states.  相似文献   

17.
We studied the temperature dependence of chlorophyll fluorescence intensity in barley leaves under weak and actinic light excitation during linear heating from room temperature to 50 degrees C. The heat-induced fluorescence rise usually appearing at around 40-50 degrees C under weak light excitation was also found in leaves treated with 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU) or hydroxylamine (NH(2)OH). However, simultaneous treatment with both these compounds caused a disappearance of the fluorescence rise. We have suggested that the mechanism of the heat-induced fluorescence rise in DCMU-treated leaves is different than that in untreated or NH(2)OH-treated leaves. In DCMU-treated leaves, the heat-induced fluorescence rise reflects an accumulation of Q(A) (-) even under weak light excitation due to the thermal inhibition of the S(2)Q(A) (-) recombination as was further documented by a decrease in the intensity of the thermoluminescence Q band. Mathematical model simulating this experimental data also supports our interpretation. In the case of DCMU-untreated leaves, our model simulations suggest that the heat-induced fluorescence rise is caused by both the light-induced reduction of Q(A) and enhanced back electron transfer from Q(B) to Q(A). The simulations also revealed the importance of other processes occurring during the heat-induced fluorescence rise, which are discussed with respect to experimental data.  相似文献   

18.
The His332 residue of the D1 protein has been identified as the likely ligand of the catalytic Mn ions in the water oxidizing complex (Ferreira, K.N., Iverson, T.M., Maghlaoui, K., Barber, J. & Iwata, S. (2004) Science 303, 1831-1838). However, its function has not been fully clarified. Here we used thermoluminescence and flash-induced chlorophyll fluorescence measurements to characterize the effect of the D1-H333E, D1-H332D and D1-H332S mutations on the electron transport of Photosystem II in intact cells of the cyanobacterium Synechocystis 6803. Although the mutants are not photoautotrophic they all show flash-induced thermoluminescence and chlorophyll fluorescence, which originate from the S(2)Q(A) (-) and S(2)Q(B) (-) recombinations demonstrating that charge stabilization takes place in the water oxidizing complex. However, the conversion of S(2) to higher S states is inhibited and the energetic stability of the S(2)Q(A) (-) charge pair is increased by 75, 50 and 7 mV in the D1-H332D, D1-H332E and D1-H332S mutants, respectively. This is most probably caused by a decrease of E(m)(S(2)/S(1)). Concomitantly, the rate of electron donation from Mn to Tyr-Z(b) during the S(1) to S(2) transition is slowed down, relative to the wild type, 350- and 60-fold in the D1-H332E and D1-H332D mutants, respectively, but remains essentially unaffected in D1-H332S. A further effect of the D1-H332E and D1-H332D mutations is the retardation of the Q(A) to Q(B) electron transfer step as an indirect consequence of the donor side modification. Our data show that although the His residue in the D1-332 position can be substituted by other metal binding residues for binding photo-oxidisable Mn it is required for controlling the functional redox energetics of the Mn cluster.  相似文献   

19.
Oxygen-evolving photosystem II (PSII) particles were purified from Chlamydomonas reinhardtii having His-tag extension at the C terminus of the CP47 protein, by a single-step Ni(2+)-affinity column chromatography after solubilization of thylakoid membranes with sucrose monolaurate. The PSII particles consisted of, in addition to intrinsic proteins, three extrinsic proteins of 33, 23 and 17 kDa. The preparation showed a high oxygen-evolving activity of 2,300-2,500 micro mol O(2) (mg Chl)(-1) h(-1) in the presence of Ca(2+) using ferricyanide as the electron acceptor, while its activity was 680-720 micro mol O(2) (mg Chl)(-1) h(-1) in the absence of Ca(2+) and Cl(-) ions. The activity was 710-820 micro mol O(2) (mg Chl)(-1) h(-1) independent of the presence or absence of Ca(2+) and Cl(-) when 2,6-dichloro-p-benzoquinone was used as the acceptor. These activities were scarcely inhibited by DCMU. The kinetics of flash-induced fluorescence decay revealed that the electron transfer from Q(A)(-) to Q(B) was significantly inhibited, and the electron transfer from Q(A)(-) to ferricyanide was largely stimulated in the presence of Ca(2+). These results indicate that the acceptor side, Q(B) site, was altered in the PSII particles but its donor side remained intact. Release-reconstitution experiments revealed that the extrinsic 23 and 17 kDa proteins were released only partially by NaCl-wash, while most of the three extrinsic proteins were removed when treated with urea/NaCl, alkaline Tris or CaCl(2). The 23 and 17 kDa proteins directly bound to PSII independent of the other extrinsic proteins, and the 33 kDa protein functionally re-bound to CaCl(2)-treated PSII which had been reconstituted with the 23 and 17 kDa proteins. These binding properties were largely different from those of the extrinsic proteins in higher plant PSII, and suggest that each of the three extrinsic proteins has their own binding sites independent of the others in the green algal PSII.  相似文献   

20.
Vavilin DV  Vermaas WF 《Biochemistry》2000,39(48):14831-14838
The lumenal CD-loop region of the D2 protein of photosystem II contains residues that interact with the primary electron donor P680 and the redox active tyrosyl residue Y(D). Photosystem II properties were studied in a number of photoautotrophic mutants of Synechocystis sp. PCC 6803, most of which carried combinatorial mutations in residues 164-170, 179-186, or 187-194 of the D2 protein. To facilitate characterization of photosystem II properties in the mutants, the CD-loop mutations were introduced into a photosystem I-less background. According to variable fluorescence decay measurements in DCMU-treated cells, charge recombination of Q(A)(-) with the donor side was faster in the majority of mutants (t(1/2) = 45-140 ms) than in the control (t(1/2) = 180 ms). However, in one mutant (named C7-3), the decay of Q(A)(-) was 2 times slower than in the control (t(1/2) = 360 ms). The decay half-time of each mutant correlated with the yield of the Q-band of thermoluminescence (TL) emitted due to S(2)Q(A)(-) charge recombination. The C7-3 mutant had the highest TL intensity, whereas no Q-band was detected in the mutants with fast Q(A)(-) decay (t(1/2) = 45-50 ms). The correlated changes in the rate of recombination and in TL yield in these strains suggest the existence of a nonradiative pathway of charge recombination between Q(A)(-) and the donor side. This may involve direct electron transfer from Q(A)(-) to P680(+) in a way not leading to formation of excited chlorophyll. Many mutations in the CD-loop appear to increase the equilibrium P680(+) concentration during the lifetime of the S(2)Q(A)(-) state, for example, by making the midpoint potential of the P680(+)/P680 redox couple more negative. The nonradiative charge recombination pathway involves a low activation energy and is less temperature-dependent than the formation of excited P680 that leads to TL emission. Therefore, during the TL measurements in these mutants, the S(2)Q(A)(-) state can recombine nonradiatively before temperatures are reached at which radiative charge recombination becomes feasible. The results presented here highlight the presence of two charge recombination pathways and the importance of the CD-loop of the D2 protein in determination of the energy gap between the P680(+)S(1) and P680S(2) states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号