首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chimeras are organisms composed of at least two genetically distinct cell lineages originating from different zygotes. In the laboratory, mouse chimeras can be produced experimentally; various techniques allow combining different early stage mouse embryos with each other or with pluripotent stem cells. Identification of the progeny of the different lineages in chimeras permits to follow cell fate and function, enabling correlation of genotype with phenotype. Mouse chimeras have become a tool to investigate critical developmental processes, including cell specification, differentiation, patterning, and the function of specific genes. In addition, chimeras can also be generated to address biological processes in the adult, including mechanisms underlying diseases or tissue repair and regeneration. This review summarizes the different types of chimeras and how they have been generated and provides examples of how mouse chimeras offer a unique and powerful system to investigate questions pertaining to cell and tissue function in the developing and adult organism.  相似文献   

2.
Gap junctions (GJs) are the only known cellular structures that allow a direct transfer of signaling molecules from cell-to-cell by forming hydrophilic channels that bridge the opposing membranes of neighboring cells. The crucial role of GJ-mediated intercellular communication (GJIC) for coordination of development, tissue function, and cell homeostasis is now well documented. In addition, recent findings have fueled the novel concepts that connexins, although redundant, have unique and specific functions, that GJIC may play a significant role in unstable, transient cell-cell contacts, and that GJ hemi-channels by themselves may function in intra-/extracellular signaling. Assembly of these channels is a complicated, highly regulated process that includes biosynthesis of the connexin subunit proteins on endoplasmic reticulum membranes, oligomerization of compatible subunits into hexameric hemi-channels (connexons), delivery of the connexons to the plasma membrane, head-on docking of compatible connexons in the extracellular space at distinct locations, arrangement of channels into dynamic, spatially and temporally organized GJ channel aggregates (so-called plaques), and coordinated removal of channels into the cytoplasm followed by their degradation. Here we review the current knowledge of the processes that lead to GJ biosynthesis and degradation, draw comparisons to other membrane proteins, highlight novel findings, point out contradictory observations, and provide some provocative suggestive solutions.  相似文献   

3.
Micro RNAs are small non-coding RNAs that participate in different biological processes, providing subtle combinational regulation of cellular pathways, often by regulating components of signalling pathways. Aberrant expression of mi RNAs is an important factor in the development and progression of disease. The canonical myomi Rs(mi R-1,-133 and-206) are central to the development and health of mammalian skeletal and cardiac muscles, but new findings show they have regulatory roles in the development of other mammalian non-muscle tissues, including nerve, brain structures, adipose and some specialised immunological cells. Moreover, the deregulation of myomi R expression is associated with a variety of different cancers, where typically they have tumor suppressor functions, although examples of an oncogenic role illustrate their diverse function in different cell environments. This review examines the involvement of the related myomi Rs at the crossroads between cell development/tissue regeneration/tissue inflammation responses, and cancer development.  相似文献   

4.
Chimeras are organisms composed of at least two genetically distinct cell lineages originating from different zygotes. In the laboratory, mouse chimeras can be produced experimentally; various techniques allow combining different early stage mouse embryos with each other or with pluripotent stem cells. Identification of the progeny of the different lineages in chimeras permits to follow cell fate and function, enabling correlation of genotype with phenotype. Mouse chimeras have become a tool to investigate critical developmental processes, including cell specification, differentiation, patterning and the function of specific genes. In addition, chimeras can also be generated to address biological processes in the adult, including mechanisms underlying diseases or tissue repair and regeneration. This review summarizes the different types of chimeras and how they have been generated and provides examples of how mouse chimeras offer a unique and powerful system to investigate questions pertaining to cell and tissue function in the developing and adult organism.Key words: chimera, developmental chimera, aggregation, blastocyst injection, embryonic stem cells, induced pluripotent stem cells, complementation, regeneration  相似文献   

5.
The dogma that a cell is rigidly committed to one tissue type has been heavily challenged over the past few years with numerous reports of transdifferentiation of cells between different lineages. Cells capable of entering lineages other than that of their tissue of origin have been identified in several diverse tissues. Recently we have focussed on a non-committed myogenic cell within the dermis that is capable, under certain conditions, of expressing muscle specific markers and even fusing to the terminally differentiated stage of muscle cell development. We have identified galectin-1 as being a potent factor implicated in this process. In this review we discuss our findings and consider the involvement of galectin-1 in muscle determination, differentiation and regeneration.  相似文献   

6.
There is a growing acceptance that tumor-infiltrating myeloid cells play an active role in tumor growth and mast cells are one of the earliest cell types to infiltrate developing tumors. Mast cells accumulate at the boundary between healthy tissues and malignancies and are often found in close association with blood vessels within the tumor microenvironment. They express many pro-angiogenic compounds, and may play an early role in angiogenesis within developing tumors. Mast cells also remodel extracellular matrix during wound healing, and this function is subverted in tumor growth, promoting tumor spread and metastasis. In addition, mast cells modulate immune responses by dampening immune rejection or directing immune cell recruitment, depending on local stimuli. In this review, we focus on key roles for mast cells in angiogenesis, tissue remodelling and immune modulation and highlight recent findings on the integral role that mast cells play in tumor growth. New findings suggest that mast cells may serve as a novel therapeutic target for cancer treatment and that inhibiting mast cell function may lead to tumor regression.  相似文献   

7.
The dogma that a cell is rigidly committed to one tissue type has been heavily challenged over the past few years with numerous reports of transdifferentiation of cells between different lineages. Cells capable of entering lineages other than that of their tissue of origin have been identified in several diverse tissues. Recently we have focussed on a non-committed myogenic cell within the dermis that is capable, under certain conditions, of expressing muscle specific markers and even fusing to the terminally differentiated stage of muscle cell development. We have identified galectin-1 as being a potent factor implicated in this process. In this review we discuss our findings and consider the involvement of galectin-1 in muscle determination, differentiation and regeneration. Published in 2004.  相似文献   

8.
Over the last 20 years, the zebrafish has become an important model organism for research on retinal function and development. Many retinal diseases do not become apparent until the later stages of life. This means that it is important to be able to analyze (gene) function in the mature retina. To meet this need, we have established an organotypic culture system of mature wild-type zebrafish retinas in order to observe changes in retinal morphology. Furthermore, cell survival during culture has been monitored by determining apoptosis in the tissue. The viability and excitability of ganglion cells have been tested at various time points in vitro by patch-clamp recordings, and retinal functionality has been assessed by measuring light-triggered potentials at the ganglion cell site. Since neurogenesis is persistent in adult zebrafish retinas, we have also monitored proliferating cells during culture by tracking their bromodeoxyuridine uptake. Reverse genetic approaches for probing the function of adult zebrafish retinas are not yet available. We have therefore established a rapid and convenient protocol for delivering plasmid DNA or oligonucleotides by electroporation to the retinal tissue in vitro. The organotypic culture of adult zebrafish retinas presented here provides a reproducible and convenient method for investigating the function of drugs and genes in the retina under well-defined conditions in vitro.  相似文献   

9.
Metabolites of glycolytic metabolism have been identified as signaling molecules and regulators of gene expression, in addition to their basic function as major energy and biosynthetic source. Immune cells reprogram metabolic pathways to cater to energy and biosynthesis demands upon activation. Most lymphocytes, including inflammatory M1 macrophages, mainly shift from oxidative phosphorylation to glycolysis, whereas regulatory T cells and M2 macrophages preferentially use the tricarboxylic acid (TCA) cycle and have reduced glycolysis. Recent studies have revealed the “non-metabolic” signaling functions of intermediates of the mitochondrial pathway and glycolysis. The roles of citrate, succinate and itaconate in immune response, including post-translational modifications of proteins and macrophages activation, have been highlighted. As an end product of glycolysis, lactate has received considerable interest from researchers. In this review, we specifically focused on studies exploring the integration of lactate into immune cell biology and associated pathologies. Lactate can act as a double-edged sword. On one hand, activated immune cells prefer to use lactate to support their function. On the other hand, accumulated lactate in the tissue microenvironment acts as a signaling molecule that restricts immune cell function. Recently, a novel epigenetic change mediated by histone lysine lactylation has been proposed. The burgeoning researches support the idea that histone lactylation participates in diverse cellular events. This review describes glycolytic metabolism, including the immunoregulation of metabolites of the TCA cycle and lactate. These latest findings strengthen our understanding on tumor and chronic inflammatory diseases and offer potential therapeutic options.  相似文献   

10.
Catenins: keeping cells from getting their signals crossed   总被引:8,自引:0,他引:8  
  相似文献   

11.
From both the fundamental and clinical perspectives, there is growing interest in mesenchymal cells and the mechanisms that regulate the two-way switch between mesenchymal and epithelial states. Here, we review recent findings showing that the Wilms' tumor gene (Wt1) is a key regulator of mesenchyme maintenance and the mesenchyme to epithelial balance in the development of certain mesodermal organs. We summarize recent experiments demonstrating, unexpectedly, that Wt1 is also essential for the integrity or function of multiple adult tissues, mainly, we argue, through regulating mesenchymal cells. We also discuss growing evidence that implicates Wt1 in tissue repair and regeneration. Drawing on these findings, we highlight the similarities between Wt1-expressing cells in different tissues. We believe that future studies aimed at elucidating the mechanisms underlying the functions of Wt1 in adult cells will reveal key cell types, pathways, and molecules regulating adult tissue homeostasis and repair.  相似文献   

12.
Stem cells are responsible for preserving morphology and function of adult tissues. Stem cells divide to self-renew and to generate progenitor cells to sustain cell demand from the tissue throughout the organism''s life. Unlike stem cells, the progenitor cells have limited proliferation potential but have the capacity to terminally differentiate and thereby to substitute older or damaged mature cells. Recent findings indicate that adult stem cells can adapt their division kinetics dynamically to match changes in tissue demand during homeostasis and regeneration. However, cell turnover not only requires stem cell division but also needs timed differentiation of the progenitor cells, which has been much less explored. In this Extra View article, we discuss the ability of progenitor cells to actively postpone terminal differentiation in the absence of a local demand and how tissue demand activates terminal differentiation via a conserved mesenchymal-epithelial transition program revealed in our recent EMBO J paper and other published and unpublished data. The extent of the significance of these results is discussed for models of tissue dynamics during both homeostasis and regeneration.  相似文献   

13.
《Fly》2013,7(3):132-137
Stem cells are responsible for preserving morphology and function of adult tissues. Stem cells divide to self-renew and to generate progenitor cells to sustain cell demand from the tissue throughout the organism's life. Unlike stem cells, the progenitor cells have limited proliferation potential but have the capacity to terminally differentiate and thereby to substitute older or damaged mature cells. Recent findings indicate that adult stem cells can adapt their division kinetics dynamically to match changes in tissue demand during homeostasis and regeneration. However, cell turnover not only requires stem cell division but also needs timed differentiation of the progenitor cells, which has been much less explored. In this Extra View article, we discuss the ability of progenitor cells to actively postpone terminal differentiation in the absence of a local demand and how tissue demand activates terminal differentiation via a conserved mesenchymal-epithelial transition program revealed in our recent EMBO J paper and other published and unpublished data. The extent of the significance of these results is discussed for models of tissue dynamics during both homeostasis and regeneration.  相似文献   

14.
The mouse embryo is built by assembling the progenitors of various tissue types into a body plan. Early postimplantation development involves the establishment of anatomical asymmetries and regionalized gene expression in the conceptus, the specification of tissue lineages, and the coordination of cell movement for correct positioning of the lineage progenitors before and at gastrulation. Recent findings reveal that Wnt and Tgfbeta signalling function is instrumental in delineating the anterior-posterior embryonic axis by defining the site of primitive streak formation and by directing the movement of the visceral endoderm. These signalling activities are also required for the specification of anterior and posterior fates of the epiblast cells and for the induction and navigation of the primordial germ cells.  相似文献   

15.
Zhang Q  Wang J  Fan S  Wang L  Cao L  Tang K  Peng C  Li Z  Li W  Gan K  Liu Z  Li X  Shen S  Li G 《FEBS letters》2005,579(17):3674-3682
LRRC4, a novel member of LRR superfamily thought to be involved in development and tumorigenesis of the nervous tissue, has the potential to suppress tumorigenesis and cell proliferation of U251MG cells. This study aimed at revealing the correlation between expression of LRRC4 and the maintenance of normal function and tumorigenesis suppression within the central nervous system. We systematically analyzed the expression and tissue distributions of the gene in tissues. Results showed that LRRC4 expression was limited to normal adult brain, both in human and in mouse, and exhibited a development-regulated pattern, but was down-regulated in brain tumor tissues and U251MG cell line. Furthermore, dynamic alterations in gene expression associated with cell cycle progression were investigated by using Tet-on system. Results showed that LRRC4 induced a cell cycle delay at the late G1 phase, probably through the alteration of the expression of different cell cycle regulating proteins responsible for mediating G1-S progression, such as p21(Waf1/Cip1) and p27(Kip1), Cdk2 and PCNA, p-ERK1/2. These findings suggest that LRRC4 may play an important role in maintaining normal function and suppressing tumorigenesis in the central nervous system.  相似文献   

16.
Protocadherins have been shown to regulate cell adhesion, cell migration, cell survival, and tissue morphogenesis in the embryo and the central nervous system, but little is known about the mechanism of protocadherin function. We previously showed that Xenopus paraxial protocadherin (PAPC) mediates cell sorting and morphogenesis by down-regulating the adhesion activity of a classical cadherin, C-cadherin. Classical cadherins function by forming lateral dimers that are necessary for their adhesive function. However, it is not known whether oligomerization also plays a role in protocadherin function. We show here that PAPC forms oligomers that are stabilized by disulfide bonds formed between conserved Cys residues in the extracellular domain. Disruption of these disulfide bonds by dithiothreitol or mutation of the conserved cysteines results in defects in oligomerization, post-translational modification, trafficking to the cell surface and cell sorting function of PAPC. Furthermore, none of the residues in the cytoplasmic domain of PAPC is required for its cell sorting activity, whereas both the transmembrane domain and the extracellular domain are necessary. Therefore, protein oligomerization and/or protein interactions via the extracellular and transmembrane domains of PAPC are required for its cell sorting function.  相似文献   

17.
The tissue kallikreins (KLKs) form a family of serine proteases that are involved in processing of polypeptide precursors and have important roles in a variety of physiologic and pathological processes. Common features of all tissue kallikrein genes identified to date in various species include a similar genomic organization of five exons, a conserved triad of amino acids for serine protease catalytic activity, and a signal peptide sequence encoded in the first exon. Here, we show that KLK4/KLK-L1/prostase/ARM1 (hereafter called KLK4) is the first significantly divergent member of the kallikrein family. The exon predicted to code for a signal peptide is absent in KLK4, which is likely to affect the function of the encoded protein. Green fluorescent protein (GFP)-tagged KLK4 has a distinct perinuclear localization, suggesting that its primary function is inside the cell, in contrast to the other tissue kallikreins characterized so far that have major extracellular functions. There are at least two differentially spliced, truncated variants of KLK4 that are either exclusively or predominantly localized to the nucleus when labeled with GFP. Furthermore, KLK4 expression is regulated by multiple hormones in prostate cancer cells and is deregulated in the androgen-independent phase of prostate cancer. These findings demonstrate that KLK4 is a unique member of the kallikrein family that may have a role in the progression of prostate cancer.  相似文献   

18.
One of the most contentious issues in biology today concerns the existence of stem cell plasticity. The term "plasticity" refers to the capacity of tissue-derived stem cells to exhibit a phenotypic potential that extends beyond the differentiated cell phenotypes of their resident tissue. Although evidence of stem cell plasticity has been reported by multiple laboratories, other scientists have not found the data persuasive and have remained skeptical about these new findings. This review will provide an overview of the stem cell plasticity controversy. We will examine many of the major objections that have been made to challenge the stem cell plasticity data. This controversy will be placed in the context of the traditional view of stem cell potential and cell phenotypic diversification. What the implications of cell plasticity are, and how its existence may modulate our present understanding of stem cell biology, will be explored. In addition, we will examine a topic that is usually not included within a discussion of stem cell biology--the direct conversion of one differentiated cell type into another. We believe that these observations on the transdifferentiation of differentiated cells have direct bearing on the issue of stem cell plasticity, and may provide insights into how cell phenotypic diversification is realized in the adult and into the origin of cell phenotypes during evolution.  相似文献   

19.
Altered cell division is associated with overproliferation and tumorigenesis, however, mitotic aberrations can also trigger antiproliferative responses leading to postmitotic cell cycle exit. Here, we focus on the role of the centrosome and in particular of centrosomal TACC (transforming acidic coiled coil) proteins in tumorigenesis and cellular senescence. We have compiled recent evidence that inhibition or depletion of various mitotic proteins which take over key roles in centrosome and kinetochore integrity and mitotic checkpoint function is sufficient to activate a p53-p21WAF driven premature senescence phenotype. These findings have direct implications for proliferative tissue homeostasis as well as for cellular and organismal aging.  相似文献   

20.
Transdifferentiated and untransdifferentiated mesenchymal stem cells (MSCs) have shown therapeutic benefits in central nervous system (CNS) injury. However, it is unclear which would be more appropriate for transplantation. To address this question, we transplanted untransdifferentiated human umbilical mesenchymal stem cells (HUMSCs) and transdifferentiated HUMSCs (HUMSC-derived neurospheres, HUMSC-NSs) into a rat model of traumatic brain injury. Cognitive function, cell survival and differentiation, brain tissue morphology and neurotrophin expression were compared between groups. Significant improvements in cognitive function and brain tissue morphology were seen in the HUMSCs group compared with HUMSC-NSs group, which was accompanied by increased neurotrophin expression. Moreover, only few grafted cells survived in both the HUMSCs and HUMSC-NSs groups, with very few of the cells differentiating into neural-like cells. These findings indicate that HUMSCs are more appropriate for transplantation and their therapeutic benefits may be associated with neuroprotection rather than cell replacement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号