首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
余豪  莫建初  黄求应  廖敏 《广西植物》2018,38(4):420-427
为筛选出高效防治黑翅土白蚁的天然植物精油,减少有机合成农药的使用,该文研究了大蒜精油、肉桂油、丁香油和印楝素油四种植物精油对黑翅土白蚁的触杀效果和驱避作用。结果表明:大蒜精油、肉桂油和丁香油的浓度为5和10 mg·m L~(-1)时,处理2 h后,黑翅土白蚁的校正死亡率达100%,而相同浓度的印楝素油和对照处理的黑翅土白蚁校正死亡率低于5%。随着处理时间延长,浓度为1.25和2.5 mg·m L~(-1)的大蒜精油、肉桂油和丁香油处理6 h时,黑翅土白蚁的校正死亡率仍达100%,而此时对应的印楝素油和对照处理的黑翅土白蚁校正死亡率仅为10%,说明大蒜精油、肉桂油和丁香油对黑翅土白蚁具有较强的触杀效果。大蒜精油、丁香油和肉桂油在处理黑翅土白蚁2 h后LC_(50)值(半致死量)分别为1.572、1.05和1.03mg·m L~(-1),说明肉桂油对黑翅土白蚁的毒性相对最大,触杀效果最好。此外,10 mg·m L~(-1)的大蒜精油、肉桂油、丁香油和印楝素油的驱避试验表明,处理4、6、8和12 h后,大蒜精油、肉桂油和丁香油三精油处理区的黑翅土白蚁数均显著低于对照区的,驱避率总体93%,而对应的印楝素油的驱避率总体28.5%,表明大蒜精油、丁香油和肉桂油三种植物精油对黑翅土白蚁均有显著的驱避活性。综上可知,四种植物精油中大蒜精油、肉桂油和丁香油在防治黑翅土白蚁方面应用潜力很好,是开发绿色环保白蚁防治药剂的可选材料。  相似文献   

2.
The effect of organic (poultry and cattle manures) and biological (effective microorganisms, EM) fertilizers on growth, essential oil yield and its compositions, endogenous phytohormones content and antibacterial activity of peppermint plants grown in pot over 12 weeks was studied. Application of organo- and bio-fertilizers greatly affected on growth, essential oil production and other estimated parameters of peppermint plants. Slight stimulation effect was happened due to soil application of organic manures. Soil application of EM alone or in combination with organic fertilizers significantly increased growth, yield and components of essential oils, endogenous hormones of peppermint as compared to other treatments. Using disc diffusion method, the extracted oil of peppermint plants amended with organic and biofertilizers recorded the highest antibacterial activity against tested pathogenic bacteria like Klebsiella pneuumoniae and Staphylococcus aureus.  相似文献   

3.
Soylu EM  Soylu S  Kurt S 《Mycopathologia》2006,161(2):119-128
The aim of this study was to find an alternative to synthetic fungicides currently used in the control of devastating oomycete pathogen Phytophthora infestans, causal agent of late blight disease of tomato. Antifungal activities of essential oils obtained from aerial parts of aromatic plants such as oregano (Origanum syriacum var. bevanii), thyme (Thymbra spicata subsp. spicata), lavender (Lavandula stoechas subsp. stoechas), rosemary (Rosmarinus officinalis), fennel (Foeniculum vulgare), and laurel (Laurus nobilis), were investigated against P. infestans. Both contact and volatile phase effects of different concentrations of the essential oils used were determined by using two in vitro methods. Chemical compositions of the essential oils were also determined by GC-MS analysis. Major compounds found in essential oils of thyme, oregano, rosemary, lavender, fennel and laurel were carvacrol (37.9%), carvacrol (79.8), borneol (20.4%), camphor (20.2%), anethole (82.8%) and 1,8-cineole (35.5%), respectively. All essential oils were found to inhibit the growth of P. infestans in a dose-dependent manner. Volatile phase effect of oregano and thyme oils at 0.3 μg/ml air was found to completely inhibit the growth of P. infestans. Complete growth inhibition of pathogen by essential oil of fennel, rosemary, lavender and laurel was, however, observed at 0.4–2.0 μg/ml air concentrations. For the determination of the contact phase effects of the tested essential oils, oregano, thyme and fennel oils at 6.4 μg/ml were found to inhibit the growth of P. infestans completely. Essential oils of rosemary, lavender and laurel were inhibitory at relatively higher concentrations (12.8, 25.6, 51.2 μg/ml respectively). Volatile phase effects of essential oils were consistently found to be more effective on fungal growth than contact phase effect. Sporangial production was also inhibited by the essential oil tested. Light and scanning electron microscopic (SEM) observation on pathogen hyphae, exposed to both volatile and contact phase of oil, revealed considerable morphological alterations in hyphae such as cytoplasmic coagulation, vacuolations, hyphal shrivelling and protoplast leakage.  相似文献   

4.
The antifungal action of four essential oils of Foeniculum vulgare (fennel), Thymus vulgaris (thyme), Eugenia caryophyllata (Clove) and Salvia officinalis (sage) was tested in vitro against Penicillium digitatum Sacc. Direct contact and vapour phase were used to test the antifungal activity of these essential oils against P. digitatum that is responsible for green mould rot of citrus fruits. The vapour phase and direct contact of clove and thyme essential oils exhibited the strongest toxicity and totally inhibited the mycelial growth of the test fungus. Thyme and clove essential oils completely inhibited P. digitatum growth either when added into the medium 600 μl l−1 or by their volatiles with 24 μl per 8 cm diameter Petri dish. In in vitro mycelial growth assay showed fungistatic and fungicidal activity by clove and thyme essential oils. Sage and fennel oils did not show any inhibitory activity on this fungus. Scanning electron microscopy (SEM) was done to study the mode of action of clove oil in P. digitatum and it was observed that treatment with the oil leads to large alterations in hyphal morphology.  相似文献   

5.
Hundreds of aromatic plant species are growing naturally around Mediterranean. Plant essential oils are incorporated in aromatic plant material and follow the litter fall. During litter degradation, the presence of essential oils can affect soil microorganisms. Mycorrhizal fungi have never been investigated so far under the presence of volatile oils. The aim of this study was to explore the effect of aromatic Laurus nobilis L. on development of two mycorrhizal species Glomus deserticola and Glomus intraradices. The response of fungi colonization and host growth were monitored under different concentrations of L. nobilis leaves and essential oil. The major compounds of L. nobilis essential oil were 1,8-cineole (49.6%), sabinene (7.8%), ??-pinene (6.0%), eugenole (5.6%), ??-terpinyl acetate (5.2%) and ??-pinene (5.1%). Both mycorrhizal fungi colonized successfully the host plants whose growth was positively influenced by mycorrhizal fungi. G. deserticola presented higher infection level than G. intraradices. The addition of L. nobilis leaves in the soil resulted in mycorrhiza inhibition. The level of inhibition was positively correlated with the added amount of aromatic leaves in the soil. The essential oil presented a little higher inhibition than the leaves. The presence of this aromatic plant in many different ecosystems could contribute in mycorrhiza inhibition and it is suggested, when it’s possible, reduction of laurel litter before reforestation programs.  相似文献   

6.
Antimicrobial properties and chemical composition of four citrus fruit essential oils to control Paenibacillus larvae, the causal agent of American foulbrood disease (AFB) were determined. This honeybee larvae disease occurs throughout the world and is found in many beekeeping areas of Argentina. Citrus fruit essential oils tested were those from grapefruit (Citrus paradisi), sweet orange (Citrus sinensis), mandarin (Citrus nobilis) and lemon (Citrus limon). The components of the essential oils were identified by SPME-GC/MS analysis. The antimicrobial activity of the oils against P. larvae were determined by the broth microdilution method. Two way ANOVA tests for minimum inhibitory concentrations (MICs) data and minimal bactericide concentrations (MBCs) data, indicated significant differences between the strains and the oils tested. The antimicrobial assays showed that the oil of C. paradisi inhibited the bacterial strains at the lowest concentrations tested, MICs and MBCs averages of 385.0 mg/l and 770.0 mg/l, respectively. This property could be attributed to the kind and percentage of the volatile components of the oil, like limonene (69.9%) and myrcene (9.6%). The use of essential oils or their specific volatile components individually against pests related to food provision may represent an alternative scope for the control of this serious disease because it does not leave toxic chemical residues in honey nor in its by products.  相似文献   

7.
何月秋  林立  杜甜钿  黄艾 《广西植物》2017,37(5):627-633
采用水蒸气蒸馏法和固相微萃取法提取紫娇花不同部位的挥发油,结合气相色谱—质谱(GC-MS)与计算机检索联用技术对其化学成分进行分析和鉴定,用面积归一化法测定各组分的相对含量,并对该挥发油清除DPPH·自由基能力和总抗氧化能力进行了研究。结果表明:紫娇花挥发油具有成分及相对含量差异大、成分较简单、化合物种类以含硫化合物为主的特点。两种方法在紫娇花不同部位挥发油中共检测出了16种化学成分,以硫醚类和含硫烃类化合物为主,相对含量占总成分在80%以上,其中Disulfide,bis(2-sulfhydrylethyl)-含量最高,其余许多成分还具有一定的药用价值。两种方法所得到的挥发油化学成分具有一定的差异性,固相微萃取法对醇类、醛类和酯类物质提取效果较好,而水蒸气蒸馏法对含硫烃类、硫醚类和萜类的提取效果更好。实验条件下紫娇花挥发油清除DPPH·自由基的IC_(50)为17.46 mg·mL~(-1),清除率可达54.86%;紫娇花挥发油在相同条件下较L-抗坏血酸具有更强的总抗氧化力。该研究结果为进一步开发利用该植物资源提供了理论依据。  相似文献   

8.
Changes in growth parameters and 14CO2 and [U-14C]-sucrose incorporation into the primary metabolic pools and essential oil were investigated in leaves and stems of M. spicata treated with etherel and gibberellic acid (GA). Compared to the control, GA and etherel treatments induced significant phenotypic changes and a decrease in chlorophyll content, CO2 exchange rate, and stomatal conductance. Treatment with etherel led to increased total incorporation of 14CO2 into the leaves wheras total incorporation from 14C sucrose was decreased. When 14CO2 was fed, the incorporation into the ethanol soluble fraction, sugars, organic acids, and essential oil was significantly higher in etherel treated leaves than in the control. However, [U-14C]-sucrose feeding led to decreased label incorporation in the ethanol-soluble fraction, sugars, organic acids, and essential oils compared to the control. When 14CO2 was fed to GA treated leaves, label incorporation in ethanol-insoluble fraction, sugars, and oils was significantly higher than in the control. In contrast, when [U-14C]-sucrose was fed the incorporation in the ethanol soluble fraction, sugars, organic acids, and oil was significantly lower than in the control. Hence the hormone treatment induces a differential utilization of precursors for oil biosynthesis and accumulation and differences in partitioning of label between leaf and stem. Etherel and GA influence the partitioning of primary photosynthetic metabolites and thus modify plant growth and essential oil accumulation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
The physicochemical conditions and microbiological characteristics of the formation waters of the Kongdian oilfield of the Dagang oilfield (China) were studied. It was demonstrated that this oilfield is a high-temperature ecosystem with formation waters characterized by low mineralization. The concentrations of nitrogen and phosphorus compounds, as well as of electron acceptors, are low. Oil and oil gas are the main organic matter sources. The oilfield is exploited with water-flooding. The oil stratum was inhabited mostly by anaerobic thermophilic microorganisms, including fermentative (102–105 cells/ml), sulfate-reducing (0–102 cells/ml), and methanogenic (0–103 cells/ml) microorganisms. Aerobic bacteria were detected mainly in the near-bottom zone of injection wells. The rate of sulfate reduction varied from 0.002 to 18.940 μg S2? l?1 day?1 and the rate of methanogenesis from 0.012 to 16.235 μg CH4 l?1 day?1. Microorganisms with great biotechnological potential inhabited the oilfield. Aerobic thermophilic bacteria were capable of oxidizing oil with formation of biomass, the products of partial oxidation of oil (volatile acids), and surfactants. During growth on the culture liquid of oil-oxidizing bacteria, methanogenic communities produced methane and carbon dioxide, which also had oil-releasing capabilities. Using various labeled tracers, the primary filtration flows of injected solutions at the test site were studied. Our comprehensive investigations allowed us to conclude that the method for microbial enhancement of oil recovery based on the activation of the stratal microflora can be applied in the Kongdian oilfield.  相似文献   

10.
Antifungal activity of the essential oils of Carum carvi and Pimpinella anisum against Botrytis cinerea fruit rot of key kiwi fruit was studied. In vitro experiments, antifungal activities of essential oils were tested on potato dextrose agar media. Results of an in vitro experiment showed that these essential oils, at all applied concentrations, inhibited grey mould growth. Black caraway essential oil at concentrations of 600 and 800?μL?L?1 inhibited germination spores of grey mould. Then, the fruits were artificially inoculated with a suspension at 1?×?105?conidia/ml and then treated with different concentrations of these essential oils. The results of in vivo conditions showed that black caraway and anise essential oils applied at all concentrations were increasing the shelf life and inhibited the grey mould growth on kiwi fruits completely in comparison to control. The result showed that black caraway and anise oils at a concentration of 800?μL?L?1 had higher total soluble solids, ascorbic acid, titrable acidity and antioxidant content compared to untreated fruits.  相似文献   

11.
Essential oils from the dried aerial parts of Limnophila geoffrayi Bonati were obtained by water-distillation. d-Pulegone (27.14%), perillaldehyde (19.13%) and limonene (9.00%) were characterized as the major constituents using gas chromatography-mass spectrometry analysis. The antimicrobial activities of the essential oils and their major components were evaluated against microorganisms encountered normally in contaminated cosmetic products, using the agar- and broth-dilution methods. Their insecticidal activities against the Oriental fruit fly Bactrocera dorsalis (Hendel) were tested using a bioassay with impregnated filter paper. The results showed that the essential oils possessed high antimicrobial activity, with minimum inhibitory concentrations ranging from 0.03 to 0.2% per unit volume (v/v). Strong insecticidal activity as a fumigant was also observed at an oil dose of 5 μl/disc, with a 94% mortality. Perillaldehyde was the most active compound among the main components of these essential oils.  相似文献   

12.
The essential oils of Daucus carota L. (Apiaceae) seeds sampled from ten wild populations spread over northern Tunisia were characterized by GC‐FID and GC/MS analyses. In total, 36 compounds were identified in the D. carota seed essential oils, with a predominance of sesquiterpene hydrocarbons in most samples (22.63–89.93% of the total oil composition). The main volatile compounds identified were β‐bisabolene (mean content of 39.33%), sabinene (8.53%), geranyl acetate (7.12%), and elemicin (6.26%). The volatile composition varied significantly across the populations, even for oils of populations harvested in similar areas. The chemometric principal component analysis and the hierarchical clustering identified four groups, each corresponding to a composition‐specific chemotype. The in vitro antimicrobial activity of the isolated essential oils was preliminarily evaluated, using the disk‐diffusion method, against one Gram‐positive (Staphylococcus aureus) and two Gram‐negative bacteria (Escherichia coli and Salmonella typhimurium), as well as against a pathogenic yeast (Candida albicans). All tested essential oils exhibited interesting antibacterial and antifungal activities against the assayed microorganisms.  相似文献   

13.
The development of natural crop protection products as alternatives to the use of synthetic fungicides is currently popular. The aim of this study is to evaluate the antifungal effects of several essential oils against the fungal pathogens, Botrytis cinerea and Rhizopus stolonifer, under in vitro condition. Four essential oils (fennel, black caraway, peppermint and thyme) were each tested at five concentrations (0, 200, 400, 600 or 800 μl l?1). In vitro results showed that the essential oil of black caraway and fennel had the highest fungicidal effect against B. cinerea and R. stolonifer, respectively. The growth of B. cinerea was completely inhibited by the essential oil of black caraway at 400 μl l?1. Fennel oil perfectly inhibited growth of R. stolonifer fungus colonies at concentration higher than 600 μl L?1 in potato dextrose agar medium. Percentage of spores germination was the lowest in medium of Fennel and black caraway essential oils, and was the highest in Thyme ones. These results show that plant essential oils can have a strong effect on reducing post-harvest decay. These plant essential oils could provide an alternative to synthetic chemicals to control post-harvest phytopathogenic fungi on fruit.  相似文献   

14.
The biopesticidal potential of six plant-derived essential oils (mint [Mentha arvensis], ajwain [Carum capticum], lemongrass [Cymbopogon citrates], clove [Eugenia caryophyllata], cedarwood [Cedrus deodara], and eucalyptus [Eucalyptus globulas]) was evaluated against Odontotermes obesus (termites), Fusarium oxysporum (plant pathogenic fungi), and Meloidogyne incognita (nematodes). In the case of termites, a “no-choice” bioassay revealed that the mint oil gave the best results (100% mortality in 30 min with 10% oil and in 10 h with 0.12% oil) followed by the lemongrass and ajwain oils. The disc diffusion method was adopted to test the anti-fungal activity of the essential oils and it was found that the clove oil gave the maximum inhibition measured in terms of the average inhibition zone diameter (5.3 ± 0.2 cm with 10% oil and 6.6 ± 0.9 cm with 20% oil), followed by the ajwain oil. To check the anti-nematicidal activity of the essential oil, in-vitro growth chamber experiments revealed that eucalyptus oil was the most efficient (100% mortality in 6 h with 1000 ??l l−1 oil and in 30 h with 125 ??l l−1 oil), followed by the ajwain oil. The use of the crude oils at low concentrations provided satisfactory results at the laboratory level against these pathogens, and needs further evaluation in field trials.  相似文献   

15.
Zanthoxylum limoncello is a native plant from southern Mexico which is used as a timber source, condiment and as a traditional medicine. Herein, we report on the volatile content of the leaf essential oil and its biological activities. The annual essential oils (2015–2018) contained volatile organic compounds which exhibited a moderate growth inhibitory activity against H. pylori ATCC 53504 (MIC 121.4–139.7 μg mL?1), 26695 (MIC 85.5–94.9 μg mL?1) and J99 (MIC 94.7–110.4 μg mL?1). These hydrodistillates contained 2‐undecanone (31.6–36.8 %; MIC 185.3–199.2 μg mL?1) and 2‐undecenal (25.1–35.7 %; MIC 144.8–111.3 μg mL?1) as the most abundant compounds which were partially involved in the anti‐H. pylori activity. The human ornithine decarboxylase enzyme (ODC1), which shows increased activity in several cancer types, was non‐competitively inhibited (Vmax 2.7>0.8 Kcat s?1) by the essential oil of Z. limoncello as well as by 2‐undecanone and 2‐undecenal in accordance to in vitro kinetic studies. In silico calculations strongly suggest that the carbonyl group of these oxygenated hydrocarbons interacts with both Asn319 and Ala39 at the subunit A of ODC1. Considering that Ala39 is located close to Asn44, a crucial amino acid of the ODC's allosteric site, the non‐competitive inhibition of the enzyme by 2‐undecanone and 2‐undecenal is endorsed. Finally, the essential oil of Z. limoncello and its main volatiles showed a significant (p<0.01) and prolonged repellent effect against Aedes aegypti.  相似文献   

16.
Crude oil from Eucalyptus globulus and E. citriodora was extracted and the rich components, cineole and limonene were fractionated. The vapours of these oils and fractions were adsorbed onto the soil in one set of germination trials while in the other set a vapour column of volatile oils was maintained above the oil-treated soil. In both sets seed germination, seedling growth, relative growth rate, water content, height and number of leaves of Phaseolus aureus var. ML-267 were compared to those of controls. All parameters were found to be significantly affected. The effect was more pronounced with a combination of eucalyptus oil onto soil and a vapour-rich air column. There was a strong correlation between the vapour concentration and its inhibitory effect.  相似文献   

17.
An inflammation response occurs when the body reacts to exogenous and endo enous noxious stimuli, and it helps the body respond to infection and repair tissues, adapt to stress, and remove dead or damaged cells. Anti-inflammatory drugs such as non-steroidal anti-inflammatory drugs are traditionally used to treat inflammation; however, these drugs often cause negative side effects. For this reason, developing and establishing effective alternative medicines for treating many chronic diseases with underlying inflammation is critically dependent on the identification of new organic molecules and bioactive substances. Aromatic and volatile compounds found in essential oils isolated from Pimenta dioica (allspice), Cuminum cyminum (cumin), and Citrus sinensis (sweet orange) are a source of bioactive compounds. Allspice essential oil reduces ear inflammation more than 65% and the anti-inflammatory activity of allspice essential oil is enhanced when combined with sweet orange peel and cumin essential oils, resulting in the reduction of edema inflammation by more than 85%, similar to indomethacin. As an alternative to anti-inflammatory treatment, essential oil mix is pharmacologically safe as it is neither toxic nor mutagenic.  相似文献   

18.
Hyptis suaveolens L. (Poit.) essential oil was tested in vitro on the growth and morphogenesis of Fusarium oxysporum f.sp. gladioli (Massey) Snyder & Hansen, which causes Fusarium corm rot and yellows in various susceptible cultivars of gladiolus. The fungitoxicity of the oil was measured by percentage radial growth inhibition using the poisoned food technique (PF) and volatile activity assay (VA). The mycelial growth of the test fungus was completely inhibited at 0.998 and 0.748 μg ml−1 concentration of oil in PF and VA, respectively. Essential oil was found to be fungicidal in nature at 1.247 and 0.998 μg ml−1 concentration of oil in PF and VA, respectively. Determination of conidial germination in the presence of oil was also carried out and it was found that the oil exhibited 100% inhibition of conidial germination at 0.450 μg ml−1 concentration. The effect of essential oil on the yield of mycelial weight was observed and it was found that at 0.873 μg ml−1 concentration no mycelium was recorded and 100% inhibition was observed. The fungitoxicity of oil did not change even on exposure to 100°C temperature or to autoclaving, and the oil also retained its fungicidal nature even after storage of 24 months. The main changes observed under light microscopy after oil treatment were a decrease and loss of conidiation and anomalies in the hyphae such as a decrease in the diameter of hyphae and granulation of cytoplasm. The treatment of the oil also showed highly reduced cytoplasm in the hyphae, showing clear retraction of the cytoplasm from the hyphae and ultimately in some areas hyphae without cytoplasm were also found. GC-MS studies of the essential oil revealed that the oil consisted of 24 compounds with 1,8-cineole as major component accounting for 44.4% of the total constituents.  相似文献   

19.
Plant-derived essential oil is an alternative to antibiotics, eliminating the concern of developing antibiotic-resistant bacterial strains. In this study, using the half-divided Petri plate assays, 32 volatile essential oils were screened for their antibacterial activity against Acidovorax citrulli (Acc). Sweet basil and peppermint oils were the most effective against Acc, with subsequent trials showing that peppermint oil to be the most active. Using gas chromatography–mass spectrometry, the major compositions of peppermint oil were analysed. Among the various compositions of peppermint oil, menthol, neomenthol, isopulegone and 1,8-cineole were significantly active against Acc and each component at 0.2% concentration inhibited all bacterial growth. This study demonstrated in vitro and in vivo antibacterial activities of peppermint oil and its active components against Acc. These results suggest the use of peppermint oil as a potential antibacterial agent to treat seed with Acc.  相似文献   

20.
The antifungal activities of cinnamon oil, clove oil, anise oil, and peppermint oil, and their main components (cinnamaldehyde, eugenol, trans-anethole, and menthol, respectively) against molds identified from areca palm leaf sheath (Mucor dimorphosporus, Penicillium sp., Aspergillus niger, and Rhizopus sp.) were investigated. An agar dilution method was employed to determine the minimum inhibitory concentration (MIC) of essential oils and their main components. Zone inhibition tests and the inhibitory effect of the leaf sheath dip-treated with essential oils against those molds were examined. Major components of essential oils on the leaf sheath during storage were quantified by gas chromatography analysis. The MIC values of essential oils on agar and on the leaf sheath were identical. With an MIC of 50 ??g ml−1, cinnamon oil had the strongest inhibitory effect. At their MICs the oils were capable of providing protection against mold growth on the leaf sheath for at least 12 weeks during storage at 25 °C and 100% RH. Scanning electron microscope examination showed that essential oils prevented spore germination. Except for menthol in peppermint oil, the main components of the essential oils, which were fairly stable over the storage period, largely contributed to the antifungal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号