首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homocarnosinosis, an inherited disorder, is characterized by an elevated level of the dipeptide homocarnosine (Hca) in the CSF and the brain and, in addition, by carnosinuria and serum carnosinase deficiency. In three children with homocarnosinosis the biochemical abberation co-exists with paraplegia, retinitis pigmentosa, and a progressive mental deficiency. In the mother, however, only the biochemical abberation was present without clinical symptoms. In order to study whether this elevated level of Hca and increased excretion of carnosine (Car) could be reduced towards normal, a dietary regimen with restriction of histidine (His) was maintained for nearly 2 1/2 years for two of the patients, 33 and 39 years old, with homocarnosinosis associated with neurological symptoms. His was reduced by about 90% in the CSF, in the plasma and in the urine. Within 5–6 months CSF Hca was reduced by about 70%, and urinary Car by 22 and 42%. The clinical neurological symptoms, however, did not alter significantly together with these biochemical changes.  相似文献   

2.
Recently, we identified an allelic variant of human carnosinase 1 (CN1) that results in increased enzyme activity and is associated with susceptibility for diabetic nephropathy in humans. Investigations in diabetic (db/db) mice showed that carnosine ameliorates glucose metabolism effectively. We now investigated the renal carnosinase metabolism in db/db mice. Kidney CN1 activity increased with age and was significantly higher in diabetic mice compared to controls. Increased CN1 activity did not affect renal carnosine levels, but anserine concentrations were tenfold lower in db/db mice compared to controls (0.24±0.2 vs. 2.28±0.3 nmol/mg protein in controls; p<0.001). Homocarnosine concentrations in kidney tissue were low in both control and db/db mice (below 0.1 nmol/mg protein, p=n.s.). Carnosine treatment for 4 weeks substantially decreased renal CN1 activity in diabetic mice (0.32±0.3 in non-treated db/db vs. 0.05±0.05 μmol/mg/h in treated db/db mice; p<0.01) close to normal activities. Renal anserine concentrations increased significantly (0.24±0.2 in non-treated db/db vs. 5.7±1.2 μmol/mg/h in treated db/db mice; p<0.01), while carnosine concentrations remained unaltered (53±6.4 in non-treated vs. 61±15 nmol/mg protein in treated db/db mice; p=n.s.). Further, carnosine treatment halved proteinuria and reduced vascular permeability to one-fifth in db/db mice. In renal tissue of diabetic mice carnosinase activity is significantly increased and anserine concentrations are significantly reduced compared to controls. Carnosine treatment largely prevents the alterations of renal carnosine metabolism.  相似文献   

3.
Summary. The aminoacyl-imidazole dipeptides carnosine (-alanyl-L-histidine) and anserine (-alanyl-1-methyl-histidine) are present in relatively high concentrations in excitable tissues, such as muscle and nervous tissue. In the present study we describe the existence of a marked sexual dimorphism of carnosine and anserine in skeletal muscles of CD1 mice. In adult animals the concentrations of anserine were higher than those of carnosine in all skeletal muscles studied, and the content of aminoacyl-imidazole dipeptides was remarkably higher in males than in females. Postnatal ontogenic studies and hormonal manipulations indicated that carnosine synthesis was up-regulated by testosterone whereas anserine synthesis increased with age. Regional variations in the concentrations of the dipeptides were observed in both sexes, skeletal muscles from hind legs having higher amounts of carnosine and anserine than those present in fore legs or in the pectoral region. The concentration of L-lysine in skeletal muscles also showed regional variations and a sexual dimorphic pattern with females having higher levels than males in all muscles studied. The results suggest that these differences may be related with the anabolic action of androgens on skeletal muscle.  相似文献   

4.
Anserine and carnosine found in animal skeletal muscle are capable of inhibiting the catalysis of lipid oxidation by heme and non-heme iron. A demineralization technique and a proteolytic enzyme (papain) were used in this research in order to reduce the levels of proxidants while maintaining high levels of anserine and camosine in poultry (chicken, duck and turkey) meat extracts. Undemineralized poultry meat extracts contained larger amounts of anserine, camosine, heme and non-heme iron (p < 0.05) than did demineralized poultry meat extracts. Both undemineralized and demineralized breast meat extracts of chicken, duck and turkey contained higher concentrations of anserine and camosine, but lower amounts of heme and non-heme iron than did thigh meat extracts. In chicken, duck and turkey meat (breast and thigh) extracts (undemineralized and demineralized), the anserine concentrations were greater (p < 0.05) than the camosine concentrations. The hydrogen-donating ability of undemineralized and demineralized chicken breast meat extracts was not significantly different (p > 0.05): however, demineralized chicken breast meat extracts showed higher (p < 0.05) ferrous chelating ability than did undemineralized meat extracts. The concentrations of anserine, camosine, heme and non-heme iron in chicken breast meat extracts increased (p < 0.05) with the addition of papain (1%) to the meat mixture before extraction. Heme and non-heme iron in the chicken breast meat extracts increased as the reaction time for papain increased from 30 to 120 min, but the concentrations of anserine and camosine were not significantly affected by the longer reaction time for papain. The hydrogen-donating ability and ferrous chelating ability of demineralized chicken breast meat extracts were not significantly affected by papain. The ratios of carnosine/anserine were very specific in the chicken, duck and turkey meat extracts (breast and thigh); and the turkey meat extracts had lower (p < 0.05) camosine/anserine ratios than did the chicken and duck meat extracts. The camosine/anserine ratios of undemineralized and demineralized poultry meat extracts were not significantly different (p > 0.05). This suggests that the carnosine/anserine ratios of undemineralized chicken (0.62 - 0.80), duck (0.75 - 0.77) and turkey (0.15 - 0.16) meat extracts could be used to estimate the single meat species in uncooked or cooked meat products.  相似文献   

5.
Comparative study of hydrolysis of carnosine and a number of its natural derivatives by human serum and rat kidney carnosinase was carried out. The rate of carnosine hydrolysis was 3–4-fold higher then for anserine and ophidine. The rate of homocarnosine, N-acetylcarnosine and carcinine hydrolysis was negligible by either of the enzymes used. Our data show that methylation, decarboxylation or acetylation of carnosine increases resistance of the molecule toward enzymatic hydrolysis. Thus, metabolic modification of carnosine may increase its half-life in the tissues.  相似文献   

6.
Hog kidney carnosinase (EC 3.4.13.3) was found to have a narrow specificity; it hydrolyzed carnosine, anserine and glycyl-L-histidine, but did not split L-alanyl-L-histidine or homocarnosine. The isoelectric point of this enzyme was 5.8 and its molecular weight was about 84 000. Carnosinase was found to be widely distributed in various tissues of the rat. Uterus, kidney, liver and lung contained high levels of carnosinase, whereas moderate concentrations were found in spleen, heart and brain, with low levels in small intestine, skeletal muscle and stomach, and none in blood.  相似文献   

7.
Recent findings indicate that carnosine, anserine and ophidine should chelate copper in the tissues where these dipeptides are present in high concentration. The observations that carnosine, anserine and ophidine are located in skeletal muscles exhibiting active oxidative metabolism and/or glycolysis and that their accumulation appears to occur ontogenetically at the same time as these tissues begin to function suggests that these dipeptides may be involved in the intracellular transport of copper for activation of cytochrome oxidase at the end of the electron transport chain and in the regulation of anaerobic glycolysis. This hypothesis provides explanations for the presence of ophidine in the skeletal muscle of whale, the presence of anserine in the flight muscles of birds, the regulatory mechanism that permits orderly replacement of the primary olfactory neuron within the nasal olfactory epithelium, and the high activity of carnosinase in the uterus.  相似文献   

8.
A polymorphism in the carnosine dipeptidase-1 gene (CNDP1), resulting in decreased plasma carnosinase activity, is associated with a reduced risk for diabetic nephropathy. Because carnosine, a natural scavenger/suppressor of ROS, advanced glycation end products, and reactive aldehydes, is readily degraded in blood by the highly active carnosinase enzyme, it has been postulated that low serum carnosinase activity might be advantageous to reduce diabetic complications. The aim of this study was to examine whether low carnosinase activity promotes circulating carnosine levels after carnosine supplementation in humans. Blood and urine were sampled in 25 healthy subjects after acute supplementation with 60 mg/kg body wt carnosine. Precooled EDTA-containing tubes were used for blood withdrawal, and plasma samples were immediately deproteinized and analyzed for carnosine and β-alanine by HPLC. CNDP1 genotype, baseline plasma carnosinase activity, and protein content were assessed. Upon carnosine ingestion, 8 of the 25 subjects (responders) displayed a measurable increase in plasma carnosine up to 1 h after supplementation. Subjects with no measurable increment in plasma carnosine (nonresponders) had ~2-fold higher plasma carnosinase protein content and ~1.5-fold higher activity compared with responders. Urinary carnosine recovery was 2.6-fold higher in responders versus nonresponders and was negatively dependent on both the activity and protein content of the plasma carnosinase enzyme. In conclusion, low plasma carnosinase activity promotes the presence of circulating carnosine upon an oral challenge. These data may further clarify the link among CNDP1 genotype, carnosinase, and diabetic nephropathy.  相似文献   

9.
Carnosine is present in high concentrations in skeletal muscle where it contributes to acid buffering and functions also as a natural protector against oxidative and carbonyl stress. Animal studies have shown an anti-diabetic effect of carnosine supplementation. High carnosinase activity, the carnosine degrading enzyme in serum, is a risk factor for diabetic complications in humans. The aim of the present study was to compare the muscle carnosine concentration in diabetic subjects to the level in non-diabetics. Type 1 and 2 diabetic patients and matched healthy controls (total n=58) were included in the study. Muscle carnosine content was evaluated by proton magnetic resonance spectroscopy (3 Tesla) in soleus and gastrocnemius. Significantly lower carnosine content (-45%) in gastrocnemius muscle, but not in soleus, was shown in type 2 diabetic patients compared with controls. No differences were observed in type 1 diabetic patients. Type II diabetic patients display a reduced muscular carnosine content. A reduction in muscle carnosine concentration may be partially associated with defective mechanisms against oxidative, glycative and carbonyl stress in muscle.  相似文献   

10.
Carnosine is found in high concentrations in skeletal muscles, where it is involved in several physiological functions. The muscle carnosine content measured within a population can vary by a factor 4. The aim of this study was to further characterize suggested determinants of the muscle carnosine content (diet, gender and age) and to identify new determinants (plasma carnosinase activity and testosterone). We investigated a group of 149 healthy subjects, which consisted of 94 men (12 vegetarians) and 55 women. Muscle carnosine was quantified in M. soleus, gastrocnemius and tibialis anterior using magnetic resonance proton spectroscopy and blood samples were collected to determine CNDP1 genotype, plasma carnosinase activity and testosterone concentrations. Compared to women, men have 36, 28 and 82% higher carnosine concentrations in M. soleus, gastrocnemius and tibialis anterior muscle, respectively, whereas circulating testosterone concentrations were unrelated to muscle carnosine levels in healthy men. The carnosine content of the M. soleus is negatively related to the subjects’ age. Vegetarians have a lower carnosine content of 26% in gastrocnemius compared to omnivores. In contrast, there is no difference in muscle carnosine content between omnivores with a high or low ingestion of β-alanine. Muscle carnosine levels are not related to the polymorphism of the CNDP1 gene or to the enzymatic activity of the plasma carnosinase. In conclusion, neither CNDP1 genotype nor the normal variation in circulating testosterone levels affects the muscular carnosine content, whereas vegetarianism, female gender and increasing age are the factors associated with reduced muscle carnosine stores.  相似文献   

11.
Isocratic reverse phase analytical high performance liquid chromatography (HPLC) has been used to examine naturally occurring imidazoles of cardiac and skeletal muscles. Elution of muscle extracts with a phosphate buffer mobile phase from columns packed with hypersil ODS (5 micron) resulted in good separation of the skeletal muscle imidazole-containing dipeptides carnosine and anserine. Measured concentrations corresponded to published values. N-Acetyl forms that were not commercially available were prepared from their parent compounds and their identities verified by NMR-spectroscopy. Examination of frog cardiac muscle confirmed the presence of N-acetylhistidine and also indicated the presence of its 1-methyl derivative. Extracts of mammalian cardiac muscle were examined by HPLC which indicated the presence of low concentrations of carnosine but substantial amounts of N-acetyl forms of histidine, 1-methylhistidine, carnosine and anserine. Fractions corresponding to the numerous peaks were examined using staining systems specific for certain chemical features and compared to results obtained for commercial or synthetic standards. Results of these tests supported the chromatographic data. The total concentrations in cardiac muscle of these imidazole-containing substances (approx. 10 mM) is sufficient to alter significantly the sensitivity of their contractile apparatus to calcium ions.  相似文献   

12.
Phosphate buffer solutions of two dipeptides prevalent in striated muscle, L-carnosine (beta-alanyl-L-histidine) and L-anserine (beta-alanyl-L-1-methylhistidine), produce active oxygen species as measured by bleaching of N,N-dimethyl-4-nitrosoaniline (RNO). Activity is enhanced 5-14-fold in the presence of 2-mercaptoimidazoles such as ergothioneine, carbimazole (3-methyl-2-mercaptoimidazole-1-carboxylate), methimazole (2-mercapto-1-methylimidazole) and 2-mercaptoimidazole but only slightly by thiourea and dimethylthiourea. Activity is proportional to carnosine concentration and to mercaptoimidazole concentration at a fixed concentration of the second component. A variety of imidazoles closely related to carnosine and anserine are inactive, even after addition of transition metal ions. Activity is moderately increased above the pKa of the carnosine imidazole ring (pH 7.2, 7.5 and 8.0) versus below the pKa (pH 6.5 and 6.8). Activity is slightly increased by addition of copper or cobalt ions but not by addition of ferrous or ferric ions. Activity is decreased by Chelex 100 pretreatment of phosphate buffer and stimulated when copper or cobalt ions are added to the chelated buffer but there is no significant stimulation by ferric ions. Catalase eliminates most activity but superoxide dismutase has little effect. We propose that metal-carnosine and metal-anserine complexes produce superoxide and also serve as superoxide dismutases with resultant accumulation of hydrogen peroxide. An unidentified radical produced from hydrogen peroxide subsequently bleaches RNO. From the biological distributions of carnosine, anserine and ergothioneine, we infer that deleterious effects are probably minimal under normal physiological circumstances due to tissue and cellular compartmentalization and to sequestration of these compounds and transition metal ions.  相似文献   

13.
Oku T  Ando S  Hayakawa T  Baba K  Nishi R  Shiozaki K  Yamada S 《Peptides》2011,32(4):648-655
Imidazole-related dipeptides, such as carnosine and anserine, occur widely in skeletal muscles of jawed vertebrates. All of the known enzymes that catalyze the hydrolysis of these dipeptides belong to the M20A metallopeptidase subfamily; two secretory enzymes, serum carnosinase (EC 3.4.13.20) and anserinase (EC 3.4.13.5), and one non-secretory enzyme, cytosolic nonspecific dipeptidase (EC 3.4.13.18). Here we report the enzymatic characterization and molecular identification of an unidentified enzyme, which catalyzes the hydrolysis of these dipeptides, from the skeletal muscle of Far Eastern brook lamprey (Lethenteron reissneri). A 60-kDa subunit protein of the enzyme was purified to near homogeneity. We cloned two M20A genes from the skeletal muscle of Far Eastern brook lamprey; one was a secretory-type gene encoding for the 60-kD protein, and another was a non-secretory-type gene presumably encoding for cytosolic nonspecific dipeptidase. Our findings indicate that the purified enzyme is a N-glycosylated secretory M20A dipeptidase distributed specifically in the jawless vertebrate group, and may be derived from a common ancestor gene between serum carnosinase and anserinase. We propose that this dipeptidase is a novel secretory M20A enzyme and is classified as neither serum carnosinase nor anserinase.  相似文献   

14.
Anserine and carnosine represent histidine-containing dipeptides that exert a pluripotent protective effect on human physiology. Anserine is known to protect against oxidative stress in diabetes and cardiovascular diseases. Human carnosinases (CN1 and CN2) are dipeptidases involved in the homeostasis of carnosine. In poikilothermic vertebrates, the anserinase enzyme is responsible for hydrolyzing anserine. However, there is no specific anserine hydrolyzing enzyme present in humans. In this study, we have systematically investigated the anserine hydrolyzing activity of human CN1 and CN2. A targeted multiple reaction monitoring (MRM) based approach was employed for studying the enzyme kinetics of CN1 and CN2 using carnosine and anserine as substrates. Surprisingly, both CN1 and CN2 can hydrolyze anserine effectively. The observed catalytic turnover rate (Vmax/[E]t) was 21.6 s?1 and 2.8 s?1 for CN1 and CN2, respectively. CN1 is almost eight-fold more efficient in hydrolyzing anserine compared to CN2, which is comparable to the efficiency of the carnosine hydrolyzing activity of CN2. The Michaelis constant (Km) value for CN1 (1.96 mM) is almost three-fold lower compared to CN2 (6.33 mM), representing higher substrate affinity for anserine-CN1 interactions. Molecular docking studies showed that anserine binds at the catalytic site of the carnosinases with an affinity similar to carnosine. Overall, the present study elucidated the inherent promiscuity of human carnosinases in hydrolyzing anserine using a sensitive LC-MS/MS approach.  相似文献   

15.
16.
Activity of kidney and liver carnosinase and concentration of carnosine in leg muscles were determined for 8 weeks in old geese of three races: Italian white, Bilgoraj and Lublin. significant differences were noted between the three races with respect to all parameters under study. the following correlations were found: 1. Between live goose weight and carnosine concentration in muscles (r= 0.5276). 2. Between weight of leg muscles and carnosine level in these muscles (r=0.4912). 3. Between liver weight and carnosine level in muscles (r= 0.3292). 4. Between kidney carnosinase activity and liver carnosinase activity (r= .2104). 5. Between liver carnosinase activity and carnosine level (r= 0.2280). 6. Between kidney carnosinase activity and carnosine level (r= -0.1675). 7. Between the ratio of kidney:liver carnosinase activity and carnosine level in muscles (r =0.1816).  相似文献   

17.
1. Muscle and brain from developing chick embryos, as well as from day-old chicks, rats, and ducks were analyzed for the histidine-containing dipeptides, anserine and carnosine. 2. Anserine was found in the brain of all species studied, whereas in muscle, anserine was found only in chicks. 3. At 15 days, the muscle of developing chick embryo contained 41 +/- 9 mumoles/100 g anserine while carnosine was present at a level of less than 3 mumoles/100 g. 4. In day-old chicks the anserine level in muscle was 100 +/- 35 mumoles/100 g while the carnosine level was 22.5 +/- 1 mumoles/100 g. 5. These findings cast doubt on earlier hypotheses relating anserine and carnosine to muscle activity.  相似文献   

18.
The in vitro metabolic stability of histidine-dipeptides (HD), carnosine (CAR) and anserine (ANS), in human serum, and their absorption kinetics after ingesting pure carnosine or HD rich foods in humans have been investigated. Healthy women (n = 4) went through four phases of taking one dose of either 450 mg of pure carnosine, 150 g beef (B), 150 g chicken (C), or chicken broth (CB) from 150 g chicken with a >2-week washout period between each phase. Blood samples were collected at 0, 30, 60, 100, 180, 240, and 300 min, and urine samples before and after (up to 7 h) ingesting pure carnosine or food. Both plasma and urine samples were analyzed for HD concentrations using a sensitive and selective LC–ESI-MS/MS method. CAR was undetectable in plasma after ingesting pure carnosine, B, C or CB. By contrast, plasma ANS concentration was significantly increased (P < 0.05) after ingesting C or CB, respectively. Urinary concentrations of both CAR and ANS were 13- to 14-fold increased after ingesting B, and 14.8- and 243-fold after CB ingestion, respectively. Thus, dietary HD, which are rapidly hydrolyzed by carnosinase in plasma, and excreted in urine, may act as reactive carbonyl species sequestering agents.  相似文献   

19.
1. After large amounts of carnosine or anserine were injected into rainbow trout white muscle, they were promptly washed out into blood and incorporated mainly into kidney. 2. These dipeptides were transported only a little to the other portions of white muscle but significantly to red muscle. 3. After anserine administration, pi-methyl-L-histidine, a constituent of anserine, increased largely in the kidney, followed by liver and muscles. 4. Histidine, a decomposed product of carnosine, increased in muscles after carnosine administration prior to the increase in kidney and liver.  相似文献   

20.
Activity of carnosinase (CN1), the only dipeptidase with substrate specificity for carnosine or homocarnosine, varies greatly between individuals but increases clearly and significantly with age. Surprisingly, the lower CN1 activity in children is not reflected by differences in CN1 protein concentrations. CN1 is present in different allosteric conformations in children and adults since all sera obtained from children but not from adults were positive in ELISA and addition of DTT to the latter sera increased OD450 values. There was no quantitative difference in the amount of monomeric CN1 between children and adults. Further, CN1 activity was dose dependently inhibited by homocarnosine. Addition of 80 μM homocarnosine lowered V max for carnosine from 440 to 356 pmol/min/μg and increased K m from 175 to 210 μM. The estimated K i for homocarnosine was higher (240 μM). Homocarnosine inhibits carnosine degradation and high homocarnosine concentrations in cerebrospinal fluid (CSF) may explain the lower carnosine degradation in CSF compared to serum. Because CN1 is implicated in the susceptibility for diabetic nephropathy (DN), our findings may have clinical implications for the treatment of diabetic patients with a high risk to develop DN. Homocarnosine treatment can be expected to reduce CN1 activity toward carnosine, resulting in higher carnosine levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号