首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Krepkiy DV  Miziorko HM 《Biochemistry》2005,44(7):2671-2677
Alignment of more than 20 deduced sequences for mevalonate diphosphate decarboxylase (MDD) indicates that serines 34, 36, 120,121, 153, and 155 are invariant residues that map within a proposed interdomain active site cleft. To test possible active site roles for these invariant serines, each has been mutated to alanine. S34A exhibits limited solubility and impaired binding of the fluorescent ATP analogue, trinitrophenyl-ATP (TNP-ATP), suggesting that Ser-34 substitution destabilizes proper enzyme folding. All other serine mutants retain structural integrity, as indicated by their ability to bind TNP-ATP at levels comparable to wild-type enzyme. S153A exhibits a 18-fold inflation in K(d) for Mg-ATP, as indicated by competitive displacement of TNP-ATP; the enzyme also is characterized by a 35-fold inflation in K(m) for Mg-ATP. S155A exhibits a 26-fold inflation in K(m) for Mg-ATP, but competitive displacement of TNP-ATP indicates only a 2-fold inflation in K(d) for this substrate. S155A exhibits both a 16-fold inflation in K(m) for mevalonate diphosphate and a 14-fold inflation in K(i(slope)) for the substrate analogue, diphosphoglycolylproline. These observations suggest roles for Ser-153 and Ser-155 in substrate binding. Catalytic consequences of mutating invariant serines 36, 120, 153, and 155 are modest (<8-fold diminution in k(cat)). In contrast, S121A, which exhibits only modest changes in K(d) for Mg-ATP and K(m) for mevalonate diphosphate, is characterized by a >42,000-fold diminution in k(cat), indicating the critical involvement of Ser-121 in reaction catalysis. The selective involvement of the latter of two tandem serine residues (Ser-120, Ser-121) in a conserved sequence motif suggests mechanistic similarities within the GHMP kinase superfamily of proteins.  相似文献   

2.
Rhodobacter sphaeroides phosphoribulokinase (PRK) is inactivated upon exposure to pyridoxal phosphate/sodium borohydride, suggesting a reactive lysine residue. Protection is afforded by a combination of the substrate ATP and the allosteric activator NADH, suggesting that the targeted lysine maps within the active site. PRK contains two invariant lysines, K53 and K165. PRK-K53M retains sensitivity to pyridoxal phosphate, implicating K165 as the target of this reagent. PRK-K165M retains wild-type structure, as judged by titration with effector NADH and the tight-binding alternative substrate trinitrophenyl-ATP. The catalytic activity of K165M and K165C mutants is depressed by >10(3)-fold. Residual activity of K165M is insensitive to pyridoxal phosphate, confirming K165 as the target of this reagent. The decreased catalytic efficiency of K165 mutants approaches the effect measured for a mutant of D169, which forms a salt-bridge to K165. K165M exhibits a 10-fold increase in S()1(/)()2 (ATP) and a 10(2)-fold increase in K(m) (Ru5P). To evaluate the contribution to Ru5P binding of K165 in comparison with this substrate's interaction with invariant H45, R49, R168, and R173, PRKs mutated at these positions have been used to determine relative K(i) values for 6-phosphogluconate, a competitive inhibitor with respect to Ru5P. Elimination of the basic side chain of K165, R49, and H45 results in increases in K(m) (Ru5P) which correlate well with the magnitude of increases in K(i) (phosphogluconate). In contrast, while mutations eliminating charge from R168 and R173 result in enzymes with substantial increases in K(m) (Ru5P), such mutant enzymes exhibit only small increases in K(i) (phosphogluconate). These observations suggest that K165, R49, and H45 are major contributors to Ru5P binding.  相似文献   

3.
In the Rhodobacter sphaeroides phosphoribulokinase (PRK) structure, there are several disordered regions, including a loop containing invariant residues Y98 and H100. The functional importance of these residues has been unclear. PRK is inactivated by diethyl pyrocarbonate (DEPC) and protected by the substrates ATP and Ru5P, as well as by the competitive inhibitor, 6-phosphogluconate, suggesting active site histidine residue(s). PRK contains only three invariant histidines: H45, H100, and H134. Previous mutagenesis studies discount significant function for H134, but implicate H45 in Ru5P binding. PRK mutant H45N is inactivated by DEPC, implicating a second active site histidine. To evaluate the function of H100, as well as another invariant loop residue Y98, PRK mutants Y98L, H100A, H100N, and H100Q were characterized. Mutant PRK binding stoichiometries for the fluorescent alternative substrate, trinitrophenyl-ATP, as well as the allosteric activator, NADH, are comparable to wild-type PRK values, suggesting intact effector and substrate binding sites. The K(mRu5P) for the H100 mutants shows modest eight- to 14-fold inflation effects, whereas Y98L exhibits a 40-fold inflation for K(mRu5P). However, Y98L's K(i) for the competitive inhibitor 6-phosphogluconate is close to that of wild-type PRK. These observations suggest that Y98 and H100 are not essential Ru5P binding determinants. The Vm of Y98L is diminished 27-fold compared with wild-type PRK. In contrast, H100A, H100N, and H100Q exhibit significant decreases in Vm of 2600-, 2300-, and 735-fold, respectively. Results suggest that the mobile region containing Y98 and H100 must contribute to PRK's active site. Moreover, H100's imidazole significantly influences catalytic efficiency.  相似文献   

4.
Mevalonate kinase serine/threonine residues have been implicated in substrate binding and inherited metabolic disease. Alignment of >20 mevalonate kinase sequences indicates that Ser-145, Ser-146, Ser-201, and Thr-243 are the only invariant residues with alcohol side chains. These residues have been individually mutated to alanine. Structural integrity of the mutants has been demonstrated by binding studies using fluorescent and spin-labeled ATP analogs. Kinetic characterization of the mutants indicates only modest changes in K(m)((ATP)). K(m) for mevalonate increases by approximately 20-fold for S146A, approximately 40-fold for T243A, and 100-fold for S201A. V(max) changes for S145A, S201A, and T243A are < or =3-fold. Thus, the 65-fold activity decrease associated with the inherited human T243I mutation seems attributable to the nonconservative substitution rather than any critical catalytic function. V(max) for S146A is diminished by 4000-fold. In terms of V/K(MVA), this substitution produces a 10(5)-fold effect, suggesting an active site location and catalytic role for Ser-146. The large k(cat) effect suggests that Ser-146 productively orients ATP during catalysis. K(D(Mg-ATP)) increases by almost 40-fold for S146A, indicating a specific role for Ser-146 in liganding Mg(2+)-ATP. Instead of mapping within a proposed C-terminal ATP binding motif, Ser-146 is situated in a centrally located motif, which characterizes the galactokinase/homoserine kinase/ mevalonate kinase/phosphomevalonate kinase protein family. These observations represent the first functional demonstration that this region is part of the active site in these related phosphotransferases.  相似文献   

5.
The bovine protein tyrosine phosphatase (BPTP) is a member of the class of low-molecular weight protein tyrosine phosphatases (PTPases) found to be ubiquitous in mammalian cells. The catalytic site of BPTP contains a CX(5)R(S/T) phosphate-binding motif or P-loop (residues 12-19) which is the signature sequence for all PTPases. Ser19, the final residue of the P-loop motif, interacts with the catalytic Cys12 and participates in stabilizing the conformation of the active site through interactions with Asn15, also in the P-loop. Mutations at Ser19 result in an enzyme with altered kinetic properties with changes in the pK(a) of the neighboring His72. The X-ray structure of the S19A mutant enzyme shows that the general conformation of the P-loop is preserved. However, changes in the loop containing His72 result in a displacement of the His72 side chain that may explain the shift in the pK(a). In addition, it was found that in the crystal, the protein forms a dimer in which Tyr131 and Tyr132 from one monomer insert into the active site of the other monomer, suggesting a dual-tyrosine motif on target sites for this enzyme. Since the activity of this PTPase is reportedly regulated by phosphorylation at Tyr131 and Tyr132, the structure of this dimer may provide a model of a self-regulation mechanism for the low-molecular weight PTPases.  相似文献   

6.
HBR1 (hemoglobin response gene 1) is an essential gene in Candida albicans that positively regulates mating type locus MTLα gene expression and thereby regulates cell type-specific developmental genes. Hbr1p contains a phosphate-binding loop (P-loop), a highly conserved motif characteristic of ATP- and GTP-binding proteins. Recombinant Hbr1p was isolated in an oligomeric state that specifically bound ATP with K(d) ~2 μM. ATP but not ADP, AMP, GTP, or dATP specifically protected Hbr1p from proteolysis by trypsin. Site-directed mutagenesis of the highly conserved P-loop lysine (K22Q) and the less conserved glycine (G19S) decreased the binding affinity for soluble ATP and ATP immobilized through its γ-phosphate. ATP bound somewhat more avidly than ATPγS to wild type and mutant Hbr1p. Although Hbr1p exhibits sequence motifs characteristic of adenylate kinases, and adenylate kinase and ATPase activities have been reported for the apparent human ortholog of Hbr1p, assays for adenylate kinase activity, autophosphorylation, and ATPase activity proved negative. Overexpression of wild type but not the mutant forms of Hbr1p restored MTlα2 expression in an HBR1/hbr1 mutant, indicating that ATP binding to the P-loop is necessary for this function of Hbr1p.  相似文献   

7.
L P Encell  L A Loeb 《Biochemistry》1999,38(37):12097-12103
Human O(6)-alkylguanine-DNA alkyltransferase (MGMT) repairs potentially cytotoxic and mutagenic alkylation damage at the O(6)-position of guanine and the O(4)-position of thymine in DNA. We have used random sequence mutagenesis and functional complementation to obtain human MGMT mutants that are resistant to the MGMT inhibitor, O(6)-benzylguanine [Encell, L. P., Coates, M. M., and Loeb, L. A. (1998) Cancer Res. 58, 1013-1020]. Here we describe screening of O(6)-benzylguanine-resistant mutants for altered substrate specificity, i.e., for an increased level of utilization of O(4)-methylthymine (m(4)T) relative to that of O(6)-methylguanine (m(6)G). One mutant identified by the screen, 56-8, containing eight substitutions near the active site (C150Y, S152R, A154S, V155G, N157T, V164M, E166Q, and A170T), was purified and characterized kinetically. The second-order rate constant for repair of m(4)T by the mutant was up to 11.5-fold greater than that of WT MGMT, and the relative m(4)T specificity, k(m(4)T)/k(m(6)G), was as much as 75-fold greater. In competition experiments with both substrates present, the mutant was 277-fold more sensitive to inhibition by m(4)T than WT MGMT. This mutant, and others like it, could help elucidate the complex relationship between adduction at specific sites in DNA and the cytotoxicity and mutagenicity of alkylating agents.  相似文献   

8.
The mutants P235A and F236A have been generated and their crystal structure was determined to resolutions of 2.38  and 2.35 Å, respectively, in order to understand the residues involved in the formation of the novel arched P-loop of subunit A of the A-ATP synthase from Pyrococcus horikoshii OT3. Both the structures show unique, altered conformations for the P-loop. Comparison with the previously solved wild type and P-loop mutant S238A structures of subunit A showed that the P-loop conformation for these two novel mutants occupy intermediate positions, with the wild type fully arched and the well-relaxed S238A mutant structures taking the extreme positions. Even though the deviation is similar for both mutants, the curvature of the P-loop faces the opposite direction. Deviations in the GER-loop, lying above the P-loop, are similar for both mutants, but in F236A, it moves towards the P-loop by around 2 Å. The curvature of the loop region V392-V410, located directly behind the P-loop, moves close by 3.6 Å towards the P-loop in the F236A structure and away by 2.5 Å in the P235A structure. Two major deviations were observed in the P235A mutant, which are not identified in any of the subunit A structures analyzed so far, one being a wide movement of the N-terminal loop region (R90-P110) making a rotation of 80° and the other being rigid-body rotation of the C-terminal helices from Q520-A588 by around 4° upwards. Taken together, the data presented demonstrate the concerted effects of the critical residues P235A, F236, and S238 in the unique P-loop conformation of the A-ATP synthases.  相似文献   

9.
In vivo urease metallocenter assembly in Klebsiella aerogenes requires the presence of several accessory proteins (UreD, UreF, and UreG) and is further facilitated by UreE. In this study, UreG was isolated and shown to be a monomer with an Mr of 21,814 +/- 20 based on gel filtration chromatography and mass spectrometric results. Although it contains a P-loop motif typically found in nucleotide-binding proteins, UreG did not bind or hydrolyze ATP or GTP, and it exhibited no affinity for ATP- and GTP-linked agarose resins. Site-directed mutagenesis of ureG allowed the substitution of Ala for Lys-20 or Thr-21 in the P-loop motif and resulted in the production of inactive urease in cells grown in the presence of nickel; hence, an intact P-loop may be essential for UreG to function in vivo. These mutant cells were unable to synthesize the UreD-UreF-UreG-urease apoprotein species that are thought to be the key urease activation complexes in the cell. An insoluble protein species containing UreD, UreF, and UreG (termed the DFG complex) was detected in cells carrying deletions in ureE and the urease structural genes. The DFG complex was solubilized in 0.5% Triton X-100 detergent, shown to bind to an ATP-linked agarose resin, and found to elute from the resin in the presence of Mg-ATP. In cells containing a UreG P-loop variant, the DFG complex was formed but did not bind to the nucleotide-linked resin. These results suggest that the UreG P-loop motif may be essential for nucleotide binding by the DFG complex and support the hypothesis that nucleotide hydrolysis is required for in vivo urease metallocenter assembly.  相似文献   

10.
Despite little supportive data, differential target protein susceptibility to redox regulation by thioredoxin (Trx) f and Trx m has been invoked to account for two distinct Trxs in chloroplasts. However, this postulate has not been rigorously tested with phosphoribulokinase (PRK), a fulcrum for redox regulation of the Calvin cycle. Prerequisite to Trx studies, the activation of spinach PRK by dithiothreitol, 2-mercaptoethanol, and glutathione was examined. Contrary to prior reports, each activated PRK, but only dithiothreitol supported Trx-dependent activation. Comparative kinetics of activation of PRK showed Trx m to be more efficient than Trx f because of its 40% higher V(max) but similar S(0.5). Activations were insensitive to ribulosebisphosphate carboxylase, which may complex with PRK in vivo. To probe the basis for superiority of Trx m, we characterized site-directed mutants of Trx f, in which unique residues in conserved regions were replaced with Trx m counterparts or deleted. These changes generally resulted in V(max) enhancements, the largest (6-fold) of which occurred with T105I, reflective of substitution in a hydrophobic region that opposes the active site. Inclusive of the present study, activation kinetics of several different Trx-regulated enzymes indicate redundancy in the functions of the chloroplastic Trxs.  相似文献   

11.
D A Toke  M L McClintick  G M Carman 《Biochemistry》1999,38(44):14606-14613
Diacylglycerol pyrophosphate (DGPP) phosphatase, encoded by the DPP1 gene, is a membrane-associated enzyme in the yeast Saccharomyces cerevisiae. The enzyme removes the beta phosphate from DGPP to form phosphatidate. The substrate and product of the DGPP phosphatase reaction play roles in lipid signaling and in cell metabolism. The deduced primary structure of the DGPP phosphatase protein contains a three-domain phosphatase sequence motif. In this work, we examined the hypothesis that the phosphatase sequence motif in the enzyme is involved in the DGPP phosphatase reaction. The amino acid residues Arg(125), His(169), and His(223) in domains 1, 2, and 3, respectively, of the phosphatase sequence motif were changed to alanine residues by site-directed mutagenesis. The mutant DPP1(R125A), DPP1(H169A), and DPP1(H223A) alleles were cloned into a yeast shuttle vector and then expressed in a dpp1Delta lpp1Delta double mutant that lacks DGPP phosphatase activity. Northern blot and immunoblot analyses showed that the mutations in the phosphatase sequence motif did not affect the expression of the enzyme. The DGPP phosphatase activities of the R125A, the H169A, and the H223A mutant enzymes were 0.05, 9, and 0.03%, respectively, of the DGPP phosphatase activity of the wild-type enzyme. Enzymes with mutations in more than one domain of the phosphatase sequence motif had no measurable DGPP phosphatase activity. The R125A and H233A mutant DGPP phosphatase enzymes had reduced V(max) and elevated K(m) values for DGPP when compared with the wild-type enzyme. The H169A mutant enzyme had reduced V(max) and K(m) values when compared with the control. The specificity constants (V(max)/K(m)()) for DGPP of the R125A mutant and H233A mutant enzymes were 4610-fold and 15 367-fold lower, respectively, when compared to the wild-type enzyme. The studies reported here indicated that the phosphatase sequence motif played an important role in the reaction catalyzed by the S. cerevisiae DGPP phosphatase.  相似文献   

12.
Despite the structural similarities between cholesterol oxidase from Streptomyces and that from Brevibacterium, both enzymes exhibit different characteristics, such as catalytic activity, optimum pH and temperature. In attempts to define the molecular basis of differences in catalytic activity or stability, substitutions at six amino acid residues were introduced into cholesterol oxidase using site-directed mutagenesis of its gene. The amino acid substitutions chosen were based on structural comparisons of cholesterol oxidases from Streptomyces and BREVIBACTERIUM: Seven mutant enzymes were constructed with the following amino acid substitutions: L117P, L119A, L119F, V145Q, Q286R, P357N and S379T. All the mutant enzymes exhibited activity with the exception of that with the L117P mutation. The resulting V145Q mutant enzyme has low activities for all substrates examined and the S379T mutant enzyme showed markedly altered substrate specificity compared with the wild-type enzyme. To evaluate the role of V145 and S379 residues in the reaction, mutants with two additional substitutions in V145 and four in S379 were constructed. The mutant enzymes created by the replacement of V145 by Asp and Glu had much lower catalytic efficiency for cholesterol and pregnenolone as substrates than the wild-type enzyme. From previous studies and this study, the V145 residue seems to be important for the stability and substrate binding of the cholesterol oxidase. In contrast, the catalytic efficiencies (k(cat)/K(m)) of the S379T mutant enzyme for cholesterol and pregnenolone were 1.8- and 6.0-fold higher, respectively, than those of the wild-type enzyme. The enhanced catalytic efficiency of the S379T mutant enzyme for pregnenolone was due to a slightly high k(cat) value and a low K(m) value. These findings will provide several ideas for the design of more powerful enzymes that can be applied to clinical determination of serum cholesterol levels and as sterol probes.  相似文献   

13.
Herdendorf TJ  Miziorko HM 《Biochemistry》2006,45(10):3235-3242
Phosphomevalonate kinase (PMK) catalyzes a key step in isoprenoid/sterol biosynthesis, converting mevalonate 5-phosphate and ATP to mevalonate 5-diphosphate and ADP. To expedite functional and structural study of this enzyme, an expression plasmid encoding His-tagged human PMK has been constructed and recombinant enzyme isolated in an active, stable form. PMK catalyzes a reversible reaction; kinetic constants of human PMK have been determined for both forward (formation of mevalonate 5-diphosphate) and reverse (formation of mevalonate 5-phosphate) reactions. Animal and invertebrate PMKs are not orthologous to plant, fungal, or bacterial PMKs, limiting the information available from sequence alignment analysis. A homology model for the structure of human PMK has been generated. The model conforms to a nucleoside monophosphate kinase family fold. This result, together with sequence comparisons of animal and invertebrate PMKs, suggests an N-terminal basic residue rich sequence as a possible "Walker A" ATP binding motif. The functions of four basic (K17, R18, K19, K22) residues and one acidic (D23) residue in the conserved sequence have been tested by mutagenesis and characterization of isolated mutant proteins. Substrate K(m) values for K17M, R18Q, K19M, and D23N have been measured for forward and reverse reactions; in comparison with wild-type PMK values, only modest (<12-fold) changes are observed. In contrast, R18Q exhibits a V(max) decrease of 100/300-fold (forward/reverse reaction). K22M activity is too low for measurement at nonsaturating substrate concentration; specific activity is decreased by >10000-fold in both forward/reverse reactions, suggesting an active site location and an important role in phosphoryl transfer.  相似文献   

14.
Bartish G  Nygård O 《Biochimie》2008,90(5):736-748
Elongation factor 2 (eEF2) is a member of the G-protein super family. G-proteins undergo conformational changes associated with binding of the guanosine nucleotide and hydrolysis of the bound GTP. These structural rearrangements affects the Switch I region (also known as the Effector loop). We have studied the role of individual amino acids in the Switch I region (amino acids 25-73) of S. cerevisiae eEF2 using functional complementation in yeast. 21 point mutations in the Switch I region were created by site-directed mutagenesis. Mutants K49R, E52Q, A53G, F55Y, K60R, Q63A, T68S, I69M and A73G were functional while mutants R54H, F55N, D57A, D57E, D57S, R59K, R59M, Q63E, R65A, R65N, T68A and T68M were inactive. Expression of mutants K49R, A53G, Q63A, I69M and A73G was associated with markedly decreased growth rates and yeast cells expressing mutants A53G and I69M became temperature sensitive. The functional capacity of eEF2 in which the major part Switch I (amino acids T56 to I69) was converted into the homologous sequence found in EF-G from E. coli was also studied. This protein chimera could functionally replace yeast eEF2 in vivo. Yeast cells expressing this mutant grew extremely slowly, showed increased cell death and became temperature sensitive. The ability of the mutant to replace authentic eEF2 in vivo indicates that the structural rearrangement of Switch I necessary for eEF2 function is similar in eukaryotes and bacteria. The effect of two point mutations in the P-loop was also studied. Mutant A25G but not A25V could functionally replace yeast eEF2 even if cells expressing the mutant grew slowly. The A25G mutation converted the consensus sequences AXXXXGK[T/S] in eEF2 to the corresponding motif GXXXXGK[T/S] found in all other G-proteins, suggesting that the alanine found in the P-loop of peptidyltranslocases are not essential for function.  相似文献   

15.
Directed evolution of N-carbamyl-D-amino acid amidohydrolase from Agrobacterium tumefaciens NRRL B11291 was attempted in order to simultaneously improve oxidative and thermal stability. A mutant library was generated by DNA shuffling, and positive clones with improved oxidative and thermal stability were screened on the basis of the activity staining method on a solid agar plate containing pH indicator (phenol red) and substrate (N-carbamyl-D-p-hydroxyphenylglycine). Two rounds of directed evolution resulted in the best mutant 2S3 with a significantly improved stability. Oxidative stability of the evolved enzyme 2S3 was about 18-fold higher than that of the wild type, and it also showed an 8-fold increased thermostability. The K(m) value of 2S3 was comparable to that of wild-type enzyme, but k(cat) was slightly decreased. DNA sequence analysis revealed that six amino acid residues (Q23L, V40A, H58Y, G75S, M184L, and T262A) were substituted in 2S3. From the mutational analysis, four mutations (Q23L, H58Y, M184L, and T262A) were found to lead to an improvement of both oxidative and thermal stability. Of them, T262A had the most significant effect, and V40A and G75S only increased the oxidative stability.  相似文献   

16.
A conserved sequence motif within the class 1 glutamine amidotransferase (GATase) domain of CTP synthases was identified. The sequence motif in the Lactococcus lactis enzyme is (429)GGTLRLG(435). This motif was present only in CTP synthases and not in other enzymes that harbor the GATase domain. Therefore, it was speculated that this sequence was involved in GTP activation of CTP synthase. Other members of the GATase protein family are not activated allosterically by GTP. Residues Thr-431 and Arg-433 were changed by site directed mutagenesis to the sterically similar residues valine and methionine, respectively. The resulting enzymes, T431V and R433M, had both lost the ability for GTP to activate the uncoupled glutaminase activity and showed reduced GTP activation of the glutamine-dependent CTP synthesis reaction. The T431V enzyme had a similar activation constant, K(A), for GTP, but the activation was only 2-3-fold compared with 35-fold for the wild type enzyme. The R433M enzyme was found to have a 10-15-fold lower K(A) for GTP and a concomitant decrease in V(app). The activation by GTP of this enzyme was about 7-fold. The kinetic parameters for saturation with ATP, UTP, and NH(4)Cl were similar for wild type and mutant enzymes, except that the R433M enzyme only had half the V(app) of the wild type enzyme when NH(4)Cl was the amino donor. The mutant enzymes T431V and R433M apparently had not lost the ability to bind GTP, but the signal transmitted through the enzyme to the active sites upon binding of the allosteric effector was clearly disrupted in the mutant enzymes.  相似文献   

17.
Undecaprenyl diphosphate (UPP) synthase catalyzes the sequential cis-condensation of isopentenyl diphosphate (IPP) onto (E,E)-farnesyl diphosphate (FPP). In our previous reports on the Micrococcus luteus B-P 26 UPP synthase, we have shown that the conserved residues in the disordered region from Ser-74 to Val-85 is crucial for the binding of FPP and the catalytic function [Fujikura, K., et al. (2000) J. Biochem. (Tokyo) 128, 917-922] and the existence of a structural P-loop motif for the FPP binding site [Fujihashi, M., et al. (2001) Proc. Natl. Acad. Sci. U.S.A., 98, 4337-4342]. To elucidate the allylic substrate binding site in more detail, we prepared eight mutant enzymes and examined their kinetic behavior. The mutant with respect to the two complementarily conserved Arg residues among the structural P-loop motif, G32R-R42G, retained the activity and showed product distribution pattern exactly similar to that of the wild-type, indicating that the complementarily conserved Arg is important for maintaining the catalytic function. Substitutions of Asp-29, Arg-33, or Arg-80 with Ala resulted in a large loss of enzyme activity, suggesting that these residues are essential for catalytic function. However, the K(m) values of these mutant enzymes for Z-GGPP, which is the first intermediate during the enzymatic cis-condensations of IPP onto FPP, were only moderately different or little changed from those of the wild type. These results suggest that the binding site for the intermediate Z-GGPP having a cis double bond is different to that for the intrinsic allylic substrate, FPP, whose diphosphate moiety is recognized by the structural P-loop.  相似文献   

18.
The muscle isoform of carnitine palmitoyltransferase I (M-CPTI) is 30- to 100-fold more sensitive to malonyl CoA inhibition than the liver isoform (L-CPTI). We have previously shown that deletion of the first 28 N-terminal amino acid residues in M-CPTI abolished malonyl CoA inhibition and high-affinity binding [Biochemistry 39 (2000) 712-717]. To determine the role of specific residues within the first 28 N-terminal amino acids of human heart M-CPTI on malonyl CoA sensitivity and binding, we constructed a series of substitution mutations and a mutant M-CPTI composed of deletion 18 combined with substitution mutations V19A, L23A, and S24A. All mutants had CPT activity similar to that of the wild type. A change of Glu3 to Ala resulted in a 60-fold decrease in malonyl CoA sensitivity and loss of high-affinity malonyl CoA binding. A change of His5 to Ala in M-CPTI resulted in only a 2-fold decrease in malonyl CoA sensitivity and a significant loss in the low- but not high-affinity malonyl CoA binding. Deletion of the first 18 N-terminal residues combined with substitution mutations V19A, L23A, and S24A resulted in a mutant M-CPTI with an over 140-fold decrease in malonyl CoA sensitivity and a significant loss in both high- and low-affinity malonyl CoA binding. This was further confirmed by a combined four-residue substitution of Glu3, Val19, Leu23, and Ser24 with alanine. Our site-directed mutagenesis studies demonstrate that Glu3, Val19, Leu23, and Ser24 in M-CPTI are important for malonyl CoA inhibition and binding, but not for catalysis.  相似文献   

19.
Comparison of the deduced amino acid sequences of DNA-[N6-adenine]-methyltransferases has revealed several conserved regions. All of these enzymes contain a DPPY [or closely related] motif. By site-directed mutagenesis of a cloned T4 dam gene, we have altered the first proline residue in this motif [located in conserved region IV of the T4 Dam-MTase] to alanine or threonine. The mutant enzymic forms, P172A and P172T, were overproduced and purified. Kinetic studies showed that compared to the wild-type [wt] the two mutant enzymic forms had: (i) an increased [5 and 20-fold, respectively] Km for substrate, S-adenosyl-methionine [AdoMet]; (ii) a slightly reduced [2 and 4-fold lower] kcat; (iii) a strongly reduced kcat/KmAdoMet [10 and 100-fold]; and (iv) almost the same Km for substrate DNA. Equilibrium dialysis studies showed that the mutant enzymes had a reduced [4 and 9-fold lower] Ka for AdoMet. Taken together these data indicate that the P172A and P172T alterations resulted primarily in a reduced affinity for AdoMet. This suggests that the DPPY-motif is important for AdoMet-binding, and that region IV contains or is part of an AdoMet-binding site.  相似文献   

20.
DeRyckere D  Smith CL  Martin GS 《Genetics》1999,151(4):1445-1457
The fission yeast cdc18(+) gene is required for both initiation of DNA replication and the mitotic checkpoint that normally inhibits mitosis in the absence of DNA replication. The cdc18(+) gene product contains conserved Walker A and B box motifs. Studies of other ATPases have shown that these motifs are required for nucleotide binding and hydrolysis, respectively. We have observed that mutant strains in which either of these motifs is disrupted are inviable. The effects of these mutations were examined by determining the phenotypes of mutant strains following depletion of complementing wild-type Cdc18. In both synchronous and asynchronous cultures, the nucleotide-hydrolysis motif mutant (DE286AA) arrests with a 1C-2C DNA content, and thus exhibits no obvious defects in entry into S phase or in the mitotic checkpoint. In contrast, in cultures synchronized by hydroxyurea arrest and release, the nucleotide-binding motif mutant (K205A) exhibits the null phenotype, with 1C and <1C DNA content, indicating a block in entry into S phase and loss of checkpoint control. In asynchronous cultures this mutant exhibits a mixed phenotype: a percentage of the population displays the null phenotype, while the remaining fraction arrests with a 2C DNA content. Thus, the phenotype exhibited by the K205A mutant is dependent on the cell-cycle position at which wild-type Cdc18 is depleted. These data indicate that both nucleotide binding and hydrolysis are required for Cdc18 function. In addition, the difference in the phenotypes exhibited by the nucleotide-binding and hydrolysis motif mutants is consistent with a two-step model for Cdc18 function in which nucleotide binding and hydrolysis are required for distinct aspects of Cdc18 function that may be executed at different points in the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号