首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The whelk Cominella glandiformis is an important predator-scavenger of New Zealand intertidal ecosystems; a few whelks can quickly eat all the soft tissues of recently dead crabs. In this study, we demonstrate that whelks can also ingest and act as paratenic hosts for at least 4 helminth species that use crabs as intermediate hosts: metacercariae of the trematode Maritrema sp. and of another unidentified trematode, larval acuariid nematodes, and cystacanths of the acanthocephalans Profilicollis spp. Large whelks ingest disproportionately more helminth larvae than small whelks, but the survival of parasites during their short stay in the whelks is not affected by whelk size. The majority of metacercariae and nematodes are passed out in whelk feces within 3 days of ingestion, whereas the few cystacanths found did not leave whelks until after that time; no parasite was left in whelks 5 days postingestion. Survival of all 4 helminth species was generally very high, though it decreased day by day in 2 species. Given that the avian definitive hosts of all 4 helminths also eat whelks, our results indicate that alternative transmission pathways exist and that parasites can take routes through food webs that are too often ignored.  相似文献   

2.
From September, 1973, through November, 1974, 255 mourning doves (Zenaida macroura) were collected in the southeastern United States and examined for endoparasites. Thirteen species of endoparasites were found and included six species of protozoans, one trematode, two cestodes, and four nematodes. New host records included Sarcocystis sp., Echinostoma revolutum, Hymenolepis sp., Aproctella stoddardi, Ascaridia columbae, and Dispharynx nasuta.  相似文献   

3.
Seven polymorphic microsatellite loci were isolated and characterized from the coastal New Zealand trematode Maritrema novaezealandensis, an important driving force in the population dynamics of its snail and crustacean intermediate hosts. Observed heterozygosities ranged from 0.33 to 0.82, and three to 17 alleles were detected in 22 trematode sporocysts. These loci will be integral for identifying parasite genetic clones within hosts and addressing a range of questions concerning the molecular ecology of this species.  相似文献   

4.
唐崇惕 《动物学报》1989,35(2):196-204
作者于1983年4月及1986年4月二次在香港检查该地区20个村庄11种淡水螺(共11680粒),及14个海区包括红树林地带和无红树林的海滩中的22种海产贝类(共12580粒)。查获26种吸虫幼虫期,其中12种见于淡水螺(5种〕,8种寄生于红树林地带的海螺(7种),5种寄生于无红树林海区的贝类(6种),1种见于在红树林地带和无红树林海滩生存的海螺(5种)。寄生淡水螺的吸虫幼虫期分隶于Cortrematidae;Maseniidae;Schistosomatidae;Notocotylidae;Strigeidae;Paramphi-stomidae;Plagiorchidae;Philophthalmidaes;Microphallidae及Heterophyidae等科。寄生于海产贝类的吸虫幼虫期分隶于Philophthalmidae; Heterophyidae;Fellodistomidae; Cyathoco-tylidae;Echinostomatidae;Opecoelidae等科及Plagiorchioidea总科。  相似文献   

5.
Coyotes (Canis latrans) have colonized northeastern North America only within the past 10-80 yr. We examined feces of coyotes in 2000-01 at three sites in New York (USA) to survey parasites in the region. Two cestodes, nine nematodes, five protozoa, one trematode, and two arthropods were identified from 145 coyote fecal samples. Parasite component community diversity was higher (n = 16 species) in southern New York than in middle and northern sites (nine species each) and infracommunity species richness was greater in southern New York than at the other sites. These differences may reflect the variable diets of coyotes, as well as recent colonization of the region and the mixing of component communities from expanding coyote populations.  相似文献   

6.
Trematode larvae must generally invade a molluscan intermediate host, usually a gastropod, before they can reach reproductive maturity in another definitive host. The research literature to date has focused almost exclusively on the documented specificity between particular trematode species and particular molluscan hosts; little attention has been paid to gastropod species that do not appear to serve as hosts. We sampled Rhode Island and Massachusetts populations of the marine gastropod Crepidula fornicata to determine whether this widespread species serves as a first intermediate host for trematodes. We also sampled from the same habitat populations of Littorina littorea and Ilyanassa obsoleta, gastropods known to serve as first intermediate hosts for several trematode species. All individuals were examined by dissection for the presence of sporocysts, rediae, or developing cercariae. Although 4-28% of L. littorea (N=112) and I. obsoleta (N=84) were infected by larvae of at least one trematode species, no individuals of C. fornicata sampled from the same locations were so infected (N=136). A survey of the Biological Abstracts computer database indicates that snails in only about 10% of marine gastropod families are known to serve as first intermediate hosts for trematodes. We suggest that more attention be paid to marine gastropods that appear not to be infected by trematode miracidia. Such species may productively serve as new models for understanding trematode host specificity and gastropod resistance to infection.  相似文献   

7.
Ten polymorphic loci were isolated and characterised from the intertidal New Zealand trematode Curtuteria australis. This common parasite manipulates the burrowing behaviour of its abundant bivalve host Austrovenus stutchburyi, with cascading impacts on the biodiversity of intertidal communities. Observed heterozygosities of the 10 loci ranged from 0.500 to 0.905, and three to 14 alleles were detected in 24 trematode metacercariae. These loci are currently being used to investigate the molecular ecology of this species within its intermediate hosts.  相似文献   

8.
The paper describes an investigation of parasite richness in relation to host life history and ecology using data from an extensive survey of helminth parasites (cestodes, trematodes and nematodes) in Soviet birds. Correlates of parasite richness (number of parasite species per host species) were sought among 13 life-history variables, 13 ecological variables and one non-biological variable (number of host individuals examined) across a sample of 158 species of host. A statistical method to control for the effects of phylogenetic association was adopted throughout. Parasite richness correlates positively with the number of hosts examined (sample size) in all three parasite groups. Positive correlations (after controlling for the effects of sample size) were also found between host body weight and parasite richness for trematodes and nematodes, but not for cestodes.
A number of ecological variables were associated with parasite richness. However, when the effects of sample size and body weight were controlled for, only a single significant correlation (an association between trematode richness and aquatic habitat) remained. Similarly, a number of significant correlates of parasite richness were found among the life-history variables examined. Though several of these were robust to the confounding effects of sample size, all could be explained by the co-variation between life-history traits and body weight among the host species under investigation.  相似文献   

9.
Both theoretical arguments and empirical evidence suggest that parasite transmission depends on host density. In helminths with complex life cycles, however, it is not clear which host, if any, is the most important. Here, the relationships between the abundance of metacercariae in second intermediate hosts, and the local density of both the first and second intermediate hosts of two trematode species, are investigated. Samples of the snail Potamopyrgus antipodarum, the amphipod Paracalliope fluviatilis and the isopod Austridotea annectens were collected from ten stations in a New Zealand lake. In the trematode Coitocaecum parvum, neither the density of the snail first intermediate host nor that of the amphipod second intermediate host correlated with infection levels in amphipods. In contrast, in the trematode Microphallus, infection levels in isopod second intermediate hosts were positively associated with isopod density and negatively associated with the density of snail first intermediate hosts. These relationships are explained by a negative correlation between snail and isopod densities, mediated in part by their different use of macrophyte beds in the lake. Overall, the results suggest that, at least for Microphallus, local infection levels depend on local intermediate host densities.  相似文献   

10.
Infection with larval trematodes sometimes alters the phenotypes of their snail hosts. While some trematode species have distinct effects on host phenotypes, it is still unclear how snail phenotypes are altered when they are parasitized with multiple trematode species. Here, we report that double infection with trematode species averages the effects of parasitic alteration on host phenotype. We found that snail hosts Batillaria attramentaria (Batillariidae) infected with Cercaria batillariae (Heterophyidae) have abnormally large shells and distribute in lower areas of the intertidal zone. Snails with another dominant trematode species, the renicolid cercaria I (Renicolidae), have slightly larger shells and distribute in upper areas of the intertidal zone. A number of double infections with both trematodes was observed in this study. Snails infected with both trematode species exhibited an intermediate size and inhabited a depth between those of snails solely infected with either trematode species, suggesting that the two trematodes simultaneously affected the snail phenotypes. Because altered host phenotypes are frequently beneficial to parasites, two trematode species may compete for successful transmission through alteration of host phenotypes.  相似文献   

11.
12.
The ectoparasitic digenean trematode Prototransversotrema steeri was observed to infect a wide range of estuarine fish species of southern Queensland. The intensity and incidence of trematode infections on Mugil cephalus hosts were recorded and appeared to alter with the estuarine movement of the sea mullet host.
Highest trematode population densities were present on post-spawning M. cephalus which had recently traversed brackish estuarine waters. Similarly, the highest prevalence of external 'red spot' lesions was also recorded from such fish.
The degree of complicity between P. steeri and 'red spot' bacterial pathogens was examined and is discussed. 'Red spot' or 'ulcer disease' is presented as a disease of multiple aetiology. It is suggested that some ectoparasites and a variety of primary and secondary bacterial pathogens may interact with environmental and behavioural factors to determine the prevalence of external lesions within each affected fish species.  相似文献   

13.
Metacercariae of the trematode Curtuteria australis (Echinostomatidae) accumulate in the foot of the New Zealand cockle Austrovenus stutchburyi, severely impairing the cockle's ability to burrow under the sediments. This results in increased predation by birds on cockles, and thus enhanced transmission rates of the parasite to its bird definitive hosts. This host manipulation by the trematode is costly: fish regularly crop the tip of the foot of cockles stranded on the sediment surface, killing any metacercariae they ingest. A second, previously undetected trematode species (characterized by 23 collar spines) co-existing with C. australis, has been found in the foot of cockles in the Otago Harbour, South Island, New Zealand. The relative abundance of the two species varies among localities, with the identity of the numerically dominant species also changing from one locality to the next. Both C. australis and the new species have a strong preference for encysting in the tip of the cockle's foot, where their impact on the burrowing ability of the host is greatest, and where they both face the risk of cropping by fish. Results indicate that these two species are ecological equivalents, and their combined numbers determine how the cockle population is affected.  相似文献   

14.
Agricultural activity and landscape features have previously been associated with diversity and prevalence of trematode species in amphibian second intermediate hosts. In this study, the density, diversity, and size of snail first intermediate hosts, and the diversity and prevalence of their trematode species, were assessed in 2 types of ponds, i.e., those adjacent to cornfields and those from the same region in southwestern Ontario that were adjacent to nonagricultural settings. Species of trematodes included, but were not restricted to, those that are known parasites of larval and adult frogs. We also assessed landscape factors likely to influence use by definitive hosts. Presence of the herbicide atrazine in ponds was measured to check that ponds adjacent to agriculture had potential to be affected by agricultural runoff. Both snail size and the proportion of snails releasing cercariae were greater in nonagricultural ponds, contrasting with a previous finding of lower trematode infection in tadpoles from nonagricultural ponds. Percentage of forest cover was associated with prevalence of certain trematode species, but not with estimates of combined prevalence. Absence of relations of trematode prevalence to measures of road density also contrasted with previous studies. We interpret our results in light of how agricultural activity might influence trematode viability, snail growth, and use by wildlife definitive hosts, independently of landscape factors.  相似文献   

15.
Kayla C. King  Curtis M. Lively 《Oikos》2009,118(9):1416-1420
The Red Queen hypothesis predicts that sexual reproduction should be favoured in locations where the risk of infection by virulent parasites is consistently high. When hosts are exposed to multiple parasites over their geographic range, the coevolving parasite species may vary among host populations. We surveyed 26 streams on the South Island of New Zealand to determine whether the frequency of snails ( Potamopyrgus antipodarum ) infected by various sterilizing trematode parasite species was correlated with the frequency of sexual individuals. We compared the results with a survey conducted over 20 years ago to determine whether the associations were consistent. We also evaluated different measures of parasite-mediated selection among populations, including prevalence of the most common local parasite (MCLP) species and parasite diversity to assess the best predictor of sexual reproduction among stream populations. The results showed that the relationship between male frequency and parasite infection is more geographically widespread than previously recorded. Additionally, we found that the prevalence of the MCLP was the best predictor of sex in habitats where hosts populations are infected with multiple parasites (approximately 15 trematode species). This study provides evidence that sexual snails occur more often in environments with high infection levels, and that the pattern of parasite-imposed selection is geographically variable. Support for the Red Queen may be strengthened by focussing on the MCLP, which may vary among host populations.  相似文献   

16.
To understand possible factors controlling transmission of trematode larvae between first and second intermediate hosts we examined the impact of ambient fauna on parasite transmission in a marine intertidal parasite-host association. Cockle hosts (Cerastoderma edule) kept together with selected co-occurring macrozoobenthic species in mesocosms acquired a lower parasite load compared to cockles kept alone, when targeted by cercariae of the trematode Himasthla elongata. The reduction of parasite load in the cockles differed between the 7 macrozoobenthic species tested and was between 35 and 91%. Three different types of reduction could be distinguished: (1) predators (Carcinus maenas, Crangon crangon) actively preying upon cercariae, (2) non-host filter feeders (Crepidula fornicata, Mya arenaria, Crassostrea gigas) filtering cercariae but not becoming infected and (3) alternative hosts (Mytilus edulis, Macoma balthica) becoming infected by the cercariae and thus distracting cercariae from the target hosts. In addition, interference competition may occur in the form of disturbance of cockles by ambient organisms resulting in lower filtration rates and subsequently lower parasite loads. Our results suggest that the species composition and relative abundance of the ambient fauna of parasite-host systems play an important role in controlling trematode transmission rates in benthic marine systems.  相似文献   

17.
I investigated spatial variation in the prevalence and abundance of 4 species of parasites in the sand crab, Emerita analoga, on 8 sandy beaches along 800 km of the California coast, to assess the importance of bird abundance for the distribution of parasites among sand crab populations. I collected sand crabs and counted shorebirds and gulls at each beach during June and November 1994. Sand crabs served as intermediate hosts for 4 species of parasites, including a trematode, Spelotrema nicolli (Cable and Hunnienen, 1938); an acanthocephalan, Polymorphus kenti (Van Cleave, 1947); a nematode, Proleptus sp., and an unidentified trypanorhynch tapeworm. Among sand crab populations, there was substantial spatial variation in the prevalence and abundance of each parasite species. No latitudinal pattern was apparent for any of the 4 species observed. Temporally, parasite prevalence and abundance was significantly different between dates for all 4 parasites. Specifically, sand crab populations experienced higher trematode, nematode, and trypanorhynch prevalence and abundance in November than in June. In contrast, prevalence and abundance of acanthocephalans were higher in June than in November. There were strong positive associations between bird abundance and prevalence of parasitic infection for trematodes and acanthocephalans for some dates but not for nematodes or trypanorhynchs, which use elasmobranchs as definitive hosts. The spatial variation in prevalence and abundance of trematodes and acanthocephalans observed among sand crab populations may be attributed to the distribution and abundance of shorebirds and gulls that serve as definitive hosts.  相似文献   

18.
Although there are no confirmed fossil records of mollusc parasitic nematodes, diverse associations of more than 108 described nematode species with slugs and snails provide a fertile ground for speculation of how mollusc parasitism evolved in nematodes. Current phylogenic resolution suggests that molluscs have been independently acquired as hosts on a number of occasions. However, molluscs are significant as hosts for only two major groups of nematodes: as intermediate hosts for metastrongyloids and as definitive hosts for a number of rhabditids. Of the 61 species of nematodes known to use molluscs as intermediate hosts, 49 belong to Metastrongyloidea (Order Strongylida); of the 47 species of nematodes that use molluscs as definitive hosts, 33 belong to the Order Rhabditida. Recent phylogenetic hypotheses have been unable to resolve whether metastrongyloids are sister taxa to those rhabditids that use molluscs as definitive hosts. Although most rhabditid nematodes have been reported not to kill their mollusc hosts prior to their reproduction, some species are pathogenic. In fact, infective juveniles of Phasmarhabditis hermaphrodita vector a lethal bacterium into the slug host in which they reproduce. This life cycle is remarkably similar to the entomopathogenic nematodes in the families Steinernematidae and Heterorhabditidae. Also, the discoveries of Alloionema and Pellioditis in slugs are interesting, as these species have been speculated to represent the ancestral forms of the entomopathogenic nematodes. Development of the infective stage appears to be an important step toward the acquisition of molluscs as definitive hosts, and the association with specific bacteria may have arisen in conjunction with the evolution of necromeny.  相似文献   

19.
The similarity in species composition between two communities generally decays as a function of increasing distance between them. Parasite communities in vertebrate definitive hosts follow this pattern but the respective relationship in intermediate invertebrate hosts of parasites with complex life cycles is unknown. In intermediate hosts, parasite communities are affected not only by the varying vagility of their definitive hosts (dispersing infective propagules) but also by the necessary coincidence of all their hosts in environmentally suitable localities. As intermediate hosts often hardly move they do not contribute to parasite dispersal. Hence, their parasite assemblages may decrease faster in similarity with increasing distance than those in highly mobile vertebrate definitive hosts. We use published field survey data to investigate distance decay of similarity in trematode communities from three prominent coastal molluscs of the Eastern North-Atlantic: the gastropods Littorina littorea and Hydrobia ulvae, and the bivalve Cerastoderma edule. We found that the similarity of trematode communities in all three hosts decayed with distance, independently of local sampling effort, and whether or not the parasites used the mollusc as first or second intermediate host in their life cycle. In H. ulvae, the halving distance (i.e. the distance that halves the similarity from its initial similarity at 1 km distance) for the trematode species using birds as definitive hosts was approximately two to three times larger than for species using fish. The initial similarities (estimated at 1 km distance) among trematode communities were relatively higher, whereas mean halving distances were lower, compared to published values for parasite communities in vertebrate hosts. We conclude that the vagility of definitive hosts accounts for a high similarity at the local scale, while the strong decay of similarity across regions is a consequence of the low probability that all necessary hosts and suitable environmental conditions coincide on a large scale.  相似文献   

20.
The comparative genetic structure of hosts and their parasites has important implications for their coevolution, but has been investigated in relatively few systems. In this study, we analysed the genetic structure and diversity of the New Zealand intertidal snail Zeacumantus subcarinatus ( n  =   330) and two of its trematode parasites, Maritrema novaezealandensis ( n  =   269) and Philophthalmus sp. ( n  =   246), using cytochrome c oxidase subunit I gene ( COI ) sequences. Snails and trematodes were examined from 11 collection sites representing three regions on the South Island of New Zealand. Zeacumantus subcarinatus displayed low genetic diversity per geographic locality, strong genetic structure following an isolation by distance pattern, and low migration rates at the scale of the study. In contrast, M. novaezealandensis possessed high genetic diversity, genetic homogeneity among collection sites and high migration rates. Genetic diversity and migration rates were typically lower for Philophthalmus sp. compared to M. novaezealandensis and it displayed weak to moderate genetic structure. The observed patterns likely result from the limited dispersal ability of the direct developing snail and the utilization of bird definitive hosts by the trematodes. In addition, snails may occasionally experience long-distance dispersal. Discrepancies between trematode species may result from differences in their effective population sizes and/or life history traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号