首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A tissue kallikrein cDNA was identified by direct immunological screening with affinity-purified anti-rat tissue kallikrein antibody from a rat submandibular cDNA library constructed with the expression vector pUC8. Sequence analysis of the kallikrein cDNA revealed an encoded protein 97% homologous to the partial amino acid sequence of rat submandibular kallikrein. This cDNA was used to hybrid-select kallikrein-specific RNA from submandibular gland. Translation of the hybrid-selected RNA in a cell-free assay system resulted in the production of a 37 kDa peptide representing the preproenzyme. In addition, hybrid-selection of RNA under less stringent conditions showed cross-hybridization with other submandibular gland mRNA species. In correlation with these results, analysis of rat genomic DNA showed extensive hybridization, suggesting a family of closely related kallikrein-like genes. Consequently, a Charon 4A rat genomic library was screened for kallikrein genes by hybridization with rat tissue kallikrein cDNA. Thirty-four clones were isolated and found to be highly homologous by hybridization and restriction enzymes analyses. Fourteen unique clones were identified by restriction enzyme site polymorphisms within DNA segments which hybridized to the kallikrein cDNA probe and it was estimated that at least 17 different kallikrein-like genes are present in the rat. Sequence and structural analysis of one of the genomic clones revealed a gene structure similar to that of other serine proteinases. Comparison of the partially sequenced exon regions of the gene with the sequence of rat tissue kallikrein cDNA reveals 89% identity when aligned for the greatest homology. However, the genomic sequence predicts termination codons in all three translational reading frames, implying that this gene is nonfunctional, i.e., a pseudogene. Comparison of the rat genomic sequence to a kallikrein-like gene from the mouse reveals extensive preservation of exons, less identity within introns and no significant homology between extragenic regions.  相似文献   

2.
Using a series of gene-specific oligonucleotide probes, we have explored the developmental pattern of expression of six members of the rat kallikrein gene family (PS, S1, S2, S3, K1, and P1) in the submandibular gland (SMG) and kidney of both sexes, the prostate and testis of the male, and the anterior pituitary gland (AP) of the female rat. PS (true kallikrein) mRNA was detected in early neonatal life in the SMG and kidney of both sexes. K1, a second kallikrein gene family member expressed in the adult kidney, had a developmental pattern similar to PS in the kidney. In contrast, tonin (S2), S3, K1, and P1, all of which are expressed in the adult SMG, did not reach detectable SMG mRNA levels until puberty in either the male or female rat. Both S3 and P1, which are expressed in the adult prostate, and the novel P1-like mRNA previously detected in the adult rat testis, first appeared in early puberty. In the female AP, PS mRNA levels were not detected until early puberty and thus exhibited a developmental profile different from that of prolactin. The demonstration that S1, S2, S3, P1, and K1 are not expressed in the SMG or prostate until puberty is consistent with the expression of these genes in these tissues being androgen-regulated; the first appearance of PS mRNA in the female AP in early puberty similarly reflects the estrogen dependence of PS gene expression in this tissue. The presence of PS mRNA levels in the SMG and kidney prior to sexual maturation reflects the androgen independence of PS gene expression and suggests that PS (true kallikrein) may play a constitutive and/or developmental role in SMG or renal physiology.  相似文献   

3.
S Y Shai  C Woodley-Miller  J Chao  L Chao 《Biochemistry》1989,28(13):5334-5343
Tissue kallikreins are a group of serine proteases which may function as peptide hormone processing enzymes. Two rat kallikrein genomic clones (RSKG-5 and RSKG-50) were sequenced and characterized. The rat tonin gene and a kallikrein-like gene were found in clones RSKG-5 and RSKG-50, respectively. The tonin gene is 4146 base pairs in length, with both the variant CCAAA and TTTAAA boxes in the 5'-end region and an AATAAA polyadenylation signal at the 3' end of the gene. It has five exons which are separated by four introns. Sequence analysis of 3.7-kb 5' upstream and 7.5-kb 3' downstream of the tonin gene failed to reveal a second kallikrein gene. Sequence comparisons of the RSKG-5 exons with tonin cDNA revealed that only one base in the 3'-noncoding region was different from that in the previously reported rat tonin cDNA. Characteristic TC- and TG-repeated sequences were also found in the first and second introns of the tonin gene. The tonin gene encodes a preprotonin of 259 amino acids (aa). The active enzyme consists of 235 aa and is preceded by a deduced signal peptide of 17 aa and a profragment of 7 aa. Northern blot analysis indicates that RSKG-5 is expressed in a sex-dependent manner in rat submandibular gland, with a higher level expressed in males. The RSKG-50 gene was truncated at an EcoRI site in the second intron, excluding its 5' end. Compared to the coding sequence of pancreatic kallikrein, 12 nucleotides have been deleted in exon 3 of the RSKG-50 gene. The nucleotide sequences of the third, fourth, and fifth exons of the RSKG-50 gene encode a polypeptide of 188 aa residues. The translated peptide is 80% homologous to rat pancreatic kallikrein and 75% homologous to rat tonin in the corresponding regions. Key residues in the RSKG-50 gene product indicate a serine protease with kallikrein-like cleavage specificity at basic amino acids.  相似文献   

4.
The expression of two kallikrein gene family members in the rat kidney   总被引:1,自引:0,他引:1  
The mRNAs for two kallikrein gene family members expressed in the rat kidney have been characterized. One mRNA (PS) has previously been found in the pancreas and submaxillary gland and encodes true kallikrein. The second mRNA (K1) encodes a novel kallikrein-like enzyme expressed in the kidney and submaxillary gland that retains many of the key amino acid residues for the characteristic enzymatic cleavage specificity of kallikrein. Two oligonucleotide hybridization probes specific for the K1 mRNA demonstrate that the K1 mRNA is expressed in the kidney and submaxillary gland, but in none of the other eight tissues known to express one or more members of the rat kallikrein gene family. The K1 mRNA is the dominant kallikrein-related mRNA of the kidney, expressed at roughly 10 times the level of the true kallikrein (PS) mRNA. In the submaxillary gland the K1 mRNA is expressed at roughly one-fourth the level of true kallikrein mRNA.  相似文献   

5.
A trypsin-like serine proteinase, antigen gamma, immunologically partially identical to glandular kallikrein when run against anti-rat glandular kallikrein antiserum in immunoelectrophoresis, was purified from the rat submandibular gland. The enzyme was purified by a two-step chromatography procedure, ionexchange chromatography followed by gel filtration. The criteria for purity were one band in SDS-polyacrylamide gel electrophoresis and in immunoelectrophoresis, respectively. Antigen gamma had a molecular mass of 25,000 Da and consisted of two polypeptide chains with molecular masses of 14,000 and 11,000 Da. The preparation contained several isoenzymes with pI ranging from 4.1 to 4.5. The enzyme showed high specific enzyme activity against the substrate D-valyl-L-leucyl-L-arginine-4-nitroanilide (S-2266), some trypsin-like and kininogenase activity, but no angiotensin converting enzyme, kininase, or tonin activity. Amidolytic activity was increased and stabilized by the presence of detergent in the assay buffer. The pH-optimum of antigen gamma amidolytic activity was about 10. Antigen gamma was inhibited by SBTI and PMSF, whereas aprotinin had to be added in a more than 100 times higher concentration than for glandular kallikrein. The binding pattern of antigen gamma to plasma proteins was different from that of tonin and glandular kallikrein. Antiserum against antigen gamma was raised in rabbits and characterized against rat submandibular gland homogenate. Immunohistochemistry showed antigen gamma in the secretory granules of the submandibular gland granular tubular cells but only adhering to the luminal cell wall in the striated and main excretory ducts. Antigen gamma was not detected in the sublingual or parotid gland or in the kidney. Antigen gamma was demonstrated by immunoelectrophoresis in rat submandibular gland saliva. The concentration was higher in sympathetically than in parasympathetically induced secretion.  相似文献   

6.
7.
A tissue kallikrein-like enzyme encoded by S3 mRNA was purified to homogeneity from rat prostate gland. The apparent molecular mass of the prostate enzyme is 32 kDa as determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The intact 32 kDa enzyme is split into two bands of lower molecular mass, 18 and 14 kDa, under reducing conditions on SDS-PAGE. NH2-terminal amino acid sequence analyses of the intact enzyme and heavy and light chains revealed the identity to the translated sequence of a prostate kallikrein cDNA (S3). Isoelectric focusing indicated that the prostate enzyme is a basic protein with pI of 7.30-7.45. Specific activities of the prostate kallikrein toward angiotensin I, angiotensinogen and rat low M(r) kininogen as well as tripeptide chromogenic substrates were compared with those of tissue kallikrein, tonin and T-kininogenase. The kinin-releasing activity is inhibited by leupeptin, antipain, benzamidine and soybean trypsin inhibitor. A sensitive and specific radioimmunoassay for the rat prostate kallikrein shows that the immunoreactive kallikrein levels in prostate and submandibular gland were 23.78 +/- 2.62 micrograms/mg protein (n = 5) and 12.29 +/- 2.25 micrograms/mg protein (n = 5), respectively. The results indicate that the prostate kallikrein S3 is expressed at high levels in both prostate and submandibular glands.  相似文献   

8.
9.
10.
11.
A 427-fold purification of rat urinary kallikrein (RUK) was achieved in three steps involving chromatography on columns of DEAE-Sepharose CL-6B, gel filtration on Sephadex G-100 and affinity chromatography on a column of benzamidine-Sepharose. Purified enzyme showed a single band on SDS-PAGE with an estimated molecular weight of 43,000. The amino-terminal sequences of the first 25 residues of RUK resemble the reported sequence for true kallikrein and share 80% identity with rat submandibular gland (RSMG) kallikrein-like serine protease. The RUK is highly reactive towards kallikrein substrates Bz-pro-phe-arg-pNA and DL-val-leu-arg-pNA, and plasmin substrate D-val-leu-lys-pNA. RSMG enzyme is more reactive towards Bz-val-gly-arg-pNA and tosyl-gly-pro-arg-pNA, preferential chromogenic substrates for trypsin-like proteases and thrombin, respectively. Both leupeptin and aprotinin inhibit RUK strongly, but soy bean trypsin inhibitor has no effect on this enzyme. RSMG enzyme is poorly inhibited by any of these inhibitors. The data suggest that although both enzymes are members of tissue kallikrein multigene family, urinary enzyme is a true kallikrein and RSMG enzyme is a kallikrein-like serine protease with different substrate specificity.  相似文献   

12.
Abstract

A 427-fold purification of rat urinary kallikrein (RUK) was achieved in three steps involving chromatography on columns of DEAE-Sepharose CL-6B, gel filtration on Sephadex G-100 and affinity chromatography on a column of benzamidine-Sepharose. Purified enzyme showed a single band on SDS-PAGE with an estimated molecular weight of 43,000. The amino-terminal sequences of the first 25 residues of RUK resemble the reported sequence for true kallikrein and share 80% identity with rat submandibular gland (RSMG) kallikrein-like serine protease. The RUK is highly reactive towards kallikrein substrates Bz-pro-phe-arg-pNA and DL-val-leu-arg-pNA, and plasmin substrate D-val-leu-lys-pNA. RSMG enzyme is more reactive towards Bz-val-gly-arg-pNA and tosyl-gly-pro-arg-pNA, preferential chromogenic substrates for trypsin-like proteases and thrombin, respectively. Both leupeptin and aprotinin inhibit RUK strongly, but soy bean trypsin inhibitor has no effect on this enzyme. RSMG enzyme is poorly inhibited by any of these inhibitors. The data suggest that although both enzymes are members of tissue kallikrein multigene family, urinary enzyme is a true kallikrein and RSMG enzyme is a kallikrein-like serine protease with different substrate specificity.  相似文献   

13.
Molecular cloning and characterization of two rat renal kallikrein genes   总被引:1,自引:0,他引:1  
Y P Chen  J Chao  L Chao 《Biochemistry》1988,27(19):7189-7196
Kallikreins compose a multigene family coding for a subgroup of serine proteases, which are involved in the processing of bioactive peptides. Two rat kallikrein-related genes, RSKG-7 (rat submandibular gland kallikrein gene 7) and RSKG-3, have been cloned and their sequences analyzed. RSKG-7 is approximately 4200 bases in length and consists of five exons and four introns. The 5' end region contains the variant CATAT box and TTTAAA box; the 3' end region contains the polyadenylation signal AATAAA. This gene encodes a putative 28,935-dalton preproenzyme of 261 amino acids (aa). The active enzyme consists of 237 aa and is preceded by a deduced signal peptide of 18 aa and a profragment of 6 aa. RSKG-3 is highly homologous to RSKG-7 in terms of its sequence and structure; it encodes a 28,730-dalton prepropeptide consisting of a signal peptide of 18 aa, a profragment of 6 aa, and an active peptide of 235 aa. Sequence comparisons of RSKG-7, RSKG-3, and other kallikrein-related enzymes reveal the key amino acid residues needed for both serine protease activity (His/Asp/Ser) and kallikrein-like cleavage specificity at basic amino acids. Northern blot analyses using specific oligonucleotide probes demonstrate that, among the 12 tissues studied, RSKG-7 and RSKG-3 are expressed in the rat kidney and submandibular gland. Castration of male rats results in a decrease in submandibular gland RSKG-7 mRNA, which can be restored to the normal level by treatment with thyroxine or testosterone. On the other hand, neither castration nor hormonal manipulation affects RSKG-7 mRNA levels in the kidney.  相似文献   

14.
Molecular cloning and primary structure of rat alpha 1-antitrypsin   总被引:1,自引:0,他引:1  
S Chao  K X Chai  L Chao  J Chao 《Biochemistry》1990,29(2):323-329
A cDNA clone encoding rat alpha 1-antitrypsin has been isolated from a lambda gt-11 rat liver cDNA library using an antigen-overlay immunoscreening method. The nucleotide sequence of this cDNA clone is 1306 base pairs in length and has a coding region of 1224 base pairs which can be translated into an alpha 1-antitrypsin precursor protein consisting of 408 amino acid residues. The cDNA sequence contains a termination codon, TAA, at position 1162 and a polyadenylation signal sequence, AATAAT, at position 1212. The calculated molecular weight of the translated mature protein is 43,700 with 387 amino acid residues; this differs from purified rat alpha 1-antitrypsin's apparent molecular weight of 54,000 because of glycosylation. Five potential glycosylation sites were identified on the basis of the cDNA sequence. The translated mature protein sequence from the cDNA clone matches completely with the N-terminal 33 amino acids of purified rat alpha 1-antitrypsin, which has an N-terminal Glu. The cDNA encoding rat alpha 1-antitrypsin shares 70% and 80% sequence identity with its human and mouse counterparts, respectively. The reactive center sequence of rat alpha 1-antitrypsin is highly conserved with respect to human alpha 1-antitrypsin, both having Met-Ser at the P1 and P1' residues. Genomic Southern blot analysis yielded a simple banding pattern, suggesting that the rat alpha 1-antitrypsin gene is single-copy. Northern blot analysis using the cDNA probe showed that rat alpha 1-antitrypsin is expressed at high levels in the liver and at low levels in the submandibular gland and the lung.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
A genomic DNA fragment (gCORE-1), encoding a portion of the cartilage proteoglycan core protein, has been isolated from a phage library using cDNA as a probe. The genomic insert is about 17 kilobase pairs; two BamHI fragments of the insert (1.3 and 4.8 kilobase pairs) contain most of the hybridizable sequences found in the cDNA. Sequence analysis of these fragments shows that they contain a total of five exons that encompass 216 amino acid residues, all of which are identical to those of the corresponding cDNA sequence. Three of the exons, which are adjacent to one another, are very similar to the corresponding exons in the gene of a rat hepatic lectin as well as to an exon in the gene of human pulmonary surfactant-associated protein. There is a strong degree of conservation of amino acid sequences encoded in the three genes, although there is no similarity between their introns. The sizes of the five exons in gCORE-1, except for one (which is indeterminate because only a partial cDNA sequence is available), are less than 184 base pairs, whereas the sizes of the introns range from 218 to greater than 2629 base pairs. Four of the introns interrupt an exon codon at either their donor or acceptor sites, between the first and second nucleotides. Only one intron does not split a codon. Intron and exon boundary sites are in agreement with known consensus sequences for introns. The dispersed distribution and relatively small size of the exons, if representative of the entire gene, suggest that the complete gene which codes for the core protein may be quite sizable.  相似文献   

17.
18.
CDNA clones for human kallikrein have been identified in a cDNA library constructed from mRNA of human salivary gland. The entire coding sequence for preprokallikrein and for the 5'- and 3'-untranslated regions were isolated by using a mixture of oligonucleotides corresponding to amino acids 51-56 of human urinary kallikrein and one oligonucleotide corresponding to amino acids 233-238 of human pancreatic kallikrein. The DNA sequence proved that, with the exception of two amino acid exchanges, kallikrein of the human salivary gland is identical with pancreatic kallikrein. Salivary gland and renal kallikrein was expressed in Escherichia coli from plasmid pKK223-3 under the control of the tac promoter. The protein was identified by Western-blot analysis and by demonstration of its specific proteolytic activity.  相似文献   

19.
The large and varied multigene families of tissue kallikreins of rat and mouse are considered to selectively release as many bioactive peptides. In order to determine whether a similar family of enzymes is expressed in the organs of the guinea pig purification studies were performed. Tissue kallikreins from the submandibular gland, coagulating gland/prostate complex and the pancreas were separated by affinity chromatography on benzamidine-Sepharose. Amino-terminal sequences, the patterns of hydrolysis rates of a number of peptide p-nitroanilides, inactivation rates by active site-directed irreversible inhibitors, specific kininogenase activities and types of kinin released were used to probe the identity of the isolated enzymes. Guinea pig tissue kallikreins 1 and 2 have been reported previously. In the present study we have identified a third type, designated tissue kallikrein 1a because of its sequence similarity to kallikrein 1, which differs from the latter in the catalytic properties. The inferred occurrence of not more than two or three independent tissue kallikrein genes in the guinea pig contrasts with the varied family of enzymes expressed by the large number of such genes present in rats and mice. Expression in the guinea pig (and also in humans) of only a small number of tissue kallikreins makes specific processing of a multitude of biologically active peptides by such enzymes unlikely.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号