首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In this report, we have fortified and extended a previous investigation [Davidson, D. J., Fraser, M. J., & Castellino, F. J. (1990) Biochemistry 29, 5584-5590] in which we demonstrated for the first time that lepidopteran insect (Spodoptera frugiperda) cells (IPLB-SF-21AE) were capable of assembling N-linked complex oligosaccharide on a human protein (plasminogen), the cDNA of which had been inserted into these cells via recombinant DNA technology with a baculovirus vector. In order to investigate whether a more general capability of lepidopteran insect cells to produce complex oligosaccharide existed, and to identify the chemical nature of the types of oligosaccharides that such insect cells were able to assemble, we have infected Mamestra brassicae (IZD-MBO503) cells for 48 h with a recombinant (r) baculovirus containing the [R561E]human plasminogen (HPg) cDNA and characterized the nature of the glycopeptidase F (GF) released N-linked oligosaccharides contained on Asn289 of the r-HPg expressed by these cells. We found that approximately 63% of the total N-linked oligosaccharides were of the complex type, with bisialo-biantennary (28%), asialo-biantennary (7%), fucosylated bisialo-biantennary (25%), and fucosylated asialo-biantennary (3%) oligosaccharides representing the major complex-type carbohydrate species. The remainder of the oligosaccharides were of the high-mannose type, with (mannose)9(N-acetylglucosamine)2 (22%), (mannose)5(N-acetylglucosamine)2 (13%), and (mannose)3(N-acetylglucosamine)2 (2%) representing the major oligosaccharides observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
A comparison has been made between the Asn289-linked oligosaccharide structures of human plasma plasminogen and a recombinant human plasminogen, expressed in lepidopteran insect (Spodoptera frugiperda) cells, after infection of these cells with a recombinant baculovirus containing the entire human plasminogen cDNA. Using anion-exchange liquid chromatography mapping of the oligosaccharide units cleaved from the proteins by glycopeptidase F, compared with elution positions of standard oligosaccharide structures, coupled with monosaccharide compositional analysis, we find that the human plasma protein contained only bisialo-biantennary complex-type carbohydrate and asialo-biantennary complex carbohydrate, confirming earlier work published by this laboratory. The glycosylation pattern of the insect cell expressed recombinant human plasminogen showed considerable microheterogeneity, with identifiable high-mannose carbohydrate (Man9GlcNAc2) and truncated high-mannose oligosaccharide (Man5GlcNAc2, Man4GlcNAc2, and Man3GlcNAc2). Of major importance, approximately 40% of the oligosaccharide population consisted of complex carbohydrate (bisialo-biantennary), identical in structure with that of the human plasma protein. This is the first direct identification of complex carbohydrate in proteins produced in insect cells and demonstrates that trimming and processing of high-mannose carbohydrate into complex-type oligosaccharide can occur. Our data indicate that both normal and alternate pathways exist in these cells for incorporation and trimming of high-mannose oligosaccharides and that mannosidases, as well as galactosyl-, hexosaminidasyl-, and sialyltransferases are present, and/or can be induced, in these cells. From these observations, we conclude that amino acid sequences and/or protein conformational properties can control oligosaccharide processing events.  相似文献   

3.
Cell lines established from the lepidopteran insect Spodoptera frugiperda (fall armyworm; Sf9) are used routinely as hosts for the expression of foreign proteins by recombinant baculovirus vectors. We have examined the pathway of protein glycosylation and secretion in these cells, using human tissue plasminogen activator (t-PA) as a model. t-PA expressed in Sf9 cells was both N glycosylated and secreted. At least a subset of the N-linked oligosaccharides in extracellular t-PA was resistant to endo-beta-N-acetyl-D-glucosaminidase H, which removes immature, high-mannose-type oligosaccharides. This refutes the general conclusion from previous studies that Sf9 cells cannot process immature N-linked oligosaccharides to an endo-beta-N-acetyl-D-glucosaminidase H-resistant form. A nonglycosylated t-PA precursor was not detected in Sf9 cells, even with very short pulse-labeling times. This suggests that the mammalian signal sequence of t-PA is efficiently recognized in Sf9 cells and that it can mediate rapid translocation across the membrane of the rough endoplasmic reticulum, where cotranslational N glycosylation takes place. However, t-PA was secreted rather slowly, with a half-time of about 1.6 h. Thus, a rate-limiting step(s) in secretion occurs subsequent to translocation and N glycosylation of the t-PA polypeptide. Treatment of Sf9 cells with tunicamycin, but not with inhibitors of oligosaccharide processing, prevented the appearance of t-PA in the extracellular medium. This suggests that N glycosylation per se, but not processing of the N-linked oligosaccharides, is required directly or indirectly in baculovirus-infected Sf9 cells for the secretion of t-PA. Finally, the relative efficiency of secretion decreased dramatically with time of infection, suggesting that the Sf9 host cell secretory pathway is compromised during the later stages of baculovirus infection.  相似文献   

4.
The Xenopus laevis egg vitelline envelope is composed of five glycoproteins (ZPA, ZPB, ZPC, ZPD, and ZPX). As shown previously, ZPC is the primary ligand for sperm binding to the egg envelope, and this binding involves the oligosaccharide moieties of the glycoprotein (Biol. Reprod., 62:766-774, 2000). To understand the molecular mechanism of sperm-egg envelope binding, we characterized the N-linked glycans of the vitelline envelope (VE) glycoproteins. The N-linked glycans of the VE were composed predominantly of a heterogeneous mixture of high-mannose (5-9) and neutral, complex oligosaccharides primarily derived from ZPC (the dominant glycoprotein). However, the ZPA N-linked glycans were composed of acidic-complex and high-mannose oligosaccharides, ZPX had only high-mannose oligosaccharides, and ZPB lacked N-linked oligosaccharides. The consensus sequence for N-linked glycosylation at the evolutionarily conserved residue N113 of the ZPC protein sequence was glycosylated solely with high-mannose oligosaccharides. This conserved glycosylation site may be of importance to the three-dimensional structure of the ZPC glycoproteins. One of the complex oligosaccharides of ZPC possessed terminal beta-N-acetyl-glucosamine residues. The same ZPC oligosaccharide species isolated from the activated egg envelopes lacked terminal beta-N-acetyl-glucosamine residues. We previously showed that the cortical granules contain beta-N-acetyl-glucosaminidase (J. Exp. Zool., 235:335-340, 1985). We propose that an alteration in the oligosaccharide structure of ZPC by glucosaminidase released from the cortical granule reaction is responsible for the loss of sperm binding ligand activity at fertilization.  相似文献   

5.
The oligosaccharide structures linked to Asn289 of a recombinant (r) variant (R561S) human plasminogen (HPg) expressed in Chinese hamster ovary (CHO) cells, after transfection of these cells with a plasmid containing the cDNA coding for the variant HPg, have been determined. Employing high-performance anion-exchange liquid chromatography mapping of the oligosaccharide units cleaved from the protein by glycopeptidase F, compared with elution positions of standard oligosaccharides, coupled with monosaccharide compositional determinations and analyses of sequential exoglycosidase digestions and specific lectin binding, we find that considerable microheterogeneity in oligosaccharide structure exists at this sole potential N-linked glycosylation site on HPg. A variety of high-mannose structures, as well as bi-, tri-, and tetraantennary complex-type carbohydrate, has been found, in relative amounts of 1-25% of the total oligosaccharides. The complex-type structures contain variable amounts of sialic acid (Sia), ranging from 0 to 5 mol/mol of oligosaccharide in the different glycan structures. Neither hybrid-type molecules, N-acetylglucosamine bisecting oligosaccharides, nor N-acetyllactosaminyl-repeat structures were found to be present in the complex-type carbohydrate pool in observable amounts. Of interest, a significant portion of the Sia exists an outer arm structures in an (alpha 2,6) linkage to the penultimate galactose, a novel finding in CHO cell-directed glycosylation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The conditions required for mammalian-type complex N-linked glycosylation of human proteins produced in insect cells with the baculovirus expression vector system were investigated. Marked alterations to N-linked glycosylation of human placental secreted alkaline phosphatase (SEAP) were observed with different baculovirus species, insect cell lines, and cell culture media. When a recombinant Autographa californica nucleopolyhedrovirus (AcMNPV) was used to produce SEAP in Trichoplusia ni (Tn-4h) cells cultured in serum-free medium, structural analyses indicated <1% hybrid and no complex oligosaccharides attached to SEAP, a typical result with the baculovirus expression vector system. However, when fetal bovine serum was added to the culture medium, 48 +/- 4% of the oligosaccharides were hybrid or complex (but asialylated) glycans. When a recombinant T. ni nucleopolyhedrovirus (TnSNPV) was similarly used to express SEAP in Tn-4h cells cultured in serum-containing medium, only 24 +/- 3% of the glycans contained terminal N-acetylglucosamine and/or galactose residues. In contrast, SEAP produced in Sf9 cells grown in serum-containing medium with AcMNPV contained <1% hybrid oligosaccharides and no complex oligosaccharides. The results illustrate that baculovirus type, host cell type, and the growth medium all have a strong influence on the glycosylation pathway in insect cells, resulting in significant alterations in structures and relative abundance of N-linked glycoforms. Although the addition of sialic acid residues to the SEAP glycans was not detected, possible approaches to obtain sialylated glycans are discussed.  相似文献   

7.
Under High Aspect Ratio Vessel (HARV) bioreactor culture conditions designed to simulate the microgravity of orbital space flight, insect tissue culture cells infected with a baculovirus expression vector produced a human glycoprotein with tri- and tetra-antennary complex N-linked oligosaccharides containing terminal sialic acid residues. The oligosaccharide structures were similar to those produced in human placental cells. Insect cells cultured in T-flasks only performed incomplete oligosaccharide processing. The mechanism of HARV-mediated changes in the eukaryotic N-linked glycosylation pathway was investigated and could be mimicked under T-flask growth conditions with the addition of N-acetylmannosamine to the culture medium. The significance of these investigations is discussed with respect to the production of recombinant therapeutic glycoproteins, insect physiology, and orbital space flight.  相似文献   

8.
Kulakosky  PC; Hughes  PR; Wood  HA 《Glycobiology》1998,8(7):741-745
The potential of insect cell cultures and larvae infected with recombinant baculoviruses to produce authentic recombinant glycoproteins cloned from mammalian sources was investigated. A comparison was made of the N-linked glycans attached to secreted alkaline phosphatase (SEAP) produced in four species of insect larvae and their derived cell lines plus one additional insect cell line and larvae of one additional species. These data survey N-linked oligosaccharides produced in four families and six genera of the order Lepidoptera. Recombinant SEAP expressed by recombinant isolates of Autographa californica and Bombyx mori nucleopolyhedroviruses was purified from cell culture medium, larval hemolymph or larval homogenates by phosphate affinity chromatography. The N-linked oligosaccharides were released with PNGase-F, labeled with 8- aminonaphthalene-1-3-6-trisulfonic acid, fractionated by polyacrylamide gel electrophoresis, and analyzed by fluorescence imaging. The oligosaccharide structures were confirmed with exoglycosidase digestions. Recombinant SEAP produced in cell lines of Lymantria dispar (IPLB-LdEIta), Heliothis virescens (IPLB-HvT1), and Bombyx mori (BmN) and larvae of Spodoptera frugiperda, Trichoplusia ni , H.virescens , B.mori , and Danaus plexippus contained oligosaccharides that were structurally identical to the 10 oligosaccharides attached to SEAP produced in T.ni cell lines. The oligosaccharide structures were all mannose-terminated. Structures containing two or three mannose residues, with and without core fucosylation, constituted more than 75% of the oligosaccharides from the cell culture and larval samples.   相似文献   

9.
Summary The glycosylation and subsequent processing of native and recombinant glycoproteins expressed in established insect cell lines and insect larvae were compared. TheSpodoptera frugiperda (Sf21) andTrichoplusia ni (TN-368 and BTI-Tn-5B1-4) cell lines possessed several intrinsic glycoproteins that are modified with both N- and O-linked oligosaccharides. The N-linked oligosaccharides were identified as both the simple (high mannose) and complex (containing sialic acid) types. Similarly, theT. ni larvae also possessed intrinsic glycoproteins that were modified with O-linked and simple and complex N-linked oligosaccharides. Additionally, human placental, secreted alkaline phosphatase (SEAP) produced during replication of a recombinant baculovirus inT. ni larvae was modified with complex oligosaccharide having sialic acid linked α(2–6) to galactose.  相似文献   

10.
The baculovirus Autographa californica nuclear polyhedrosis virus was used as an expression vector to produce hepatitis B virus surface antigen with and without the pre-S domain. The S gene product was expressed as both fusion and nonfusion polypeptides. No difference was observed in the posttranslational modification of the fusion and nonfusion polypeptides. The S proteins were not secreted into the medium but were inserted into the endoplasmic reticulum, glycosylated, and partially extruded into the lumen of the endoplasmic reticulum as 22-nm lipoprotein particles. The oligosaccharide chains on the insect cell-derived S protein were of the N-linked high-mannose form, in contrast to the complex-type oligosaccharides detected on plasma-derived hepatitis B virus surface antigen. The pre-S-S polypeptides were inserted into the endoplasmic reticulum, glycosylated, and modified by fatty acid acylation with myristic acid. A procedure was developed to purify the S protein from cellular membranes by using detergent extraction and immunoaffinity chromatography. The purified S protein was in the form of protein-detergent micelles and was highly antigenic and immunogenic.  相似文献   

11.
The A33 antigen is a cell surface glycoprotein expressed in human gastrointestinal epithelium and in 95% of colorectal cancers. We have compared the N-linked glycosylation profile of A33 antigen naturally expressed in a human colorectal cancer cell line with recombinant human A33 antigen (rA33) produced in insect cell culture using the baculovirus expression vector. N-Linked glycans were enzymatically released from the protein, and glycan composition was analyzed by HPLC. In three insect cell lines tested (Sf-21, Tn5B1-4, and Tn-4s), glycosylation of rA33 was dominated by high mannose structures (M5Gn2 to M9Gn2; 78-95% of total N-linked glycans), with M8Gn2 being the single most abundant glycoform. A33 antigen naturally expressed in the SW1222 human colon cancer cell line (A33) also possessed a high abundance of high mannose glycans (72%). No complex glycosylation was detected on rA33 expressed in insect cells. Natural A33 was galactosylated to a small extent (6%). These results illustrate a case of similar glycosylation of a glycoprotein between a recombinant version produced in insect cell culture and its counterpart naturally expressed in human cell culture.  相似文献   

12.
H Steiner  G Pohl  H Gunne  M Hellers  A Elhammer  L Hansson 《Gene》1988,73(2):449-457
A cDNA fragment encoding the human tissue-type plasminogen activator was inserted into the baculovirus Autographa californica nuclear polyhedrosis virus downstream from the polyhedrin promoter. The induction kinetics of t-PA was followed, after infection of Spodoptera frugiperda cells, at both mRNA and protein levels. Fibrinolytically active plasminogen activator accumulated in the culture medium and reached 2.5 micrograms/ml after 120 h. The protein was compared with recombinant plasminogen activator produced in mouse cells and was found to be slightly smaller. This difference in size was found to be caused by N-linked oligosaccharides which are shorter in the recombinant activator obtained from insect cells. The molecules produced in such cells contain at least two different types of N-linked glycans, since only one out of three oligosaccharides is sensitive to endoglycosidase H. However, all glycan structures bind strongly to concanavalin A-Sepharose.  相似文献   

13.
The oligosaccharides of recombinant HIV gp120 expressed in lepidopteran Sf9 cells were analysed after hydrazine release by gel permeation and high pH anion exchange chromatography. N-Linked glycans were exclusively of the oligomannose series and no evidence for charged complex or hybrid type glycans was found. However a glycosylation reaction similar to those found in vertebrates was evident. The major glycoform of gp120, that comprised 30% of all the species analysed, was structurally identified by exoglycosidase digestion and found to be a core fucosylated structure, Man1,6(Man1,3)Man1,4GlcNAc(Fuc1,6)GlcNAc. Further confirmation of the ability of lepidopteran cells to fucosylate N-linked glycans was provided by an in vitro analysis of this reaction using authentic oligosaccharide substrates.  相似文献   

14.
Incubation of a Spodoptera frugiperda (IPLB-SF-21AE) cell extract with the oligosaccharide Man9GlcNAc2, the aglucosyl derivative of the glycan that is normally transferred from the dolichol carrier to the relevant Asn residue in the nascent protein, results in its trimming to Man6GlcNAc2, an intermediate that is relatively stable to further alpha-D-mannosidase action in these cells. On the other hand, incubation of a similar extract from cells that had been infected for various times with a wild-type baculovirus (Autographa californica nuclear polyhedrosis virus) or a recombinant baculovirus (r-BAC)/human plasminogen (HPg) construct employed for expression of HPg led to rapid trimming of Man6GlcNAc2 to Man5GlcNAc2 and Man3GlcNAc2. These latter reactions displayed temporal effects, in that an enhancement of this latter trimming process occurred as a function of the time of infection of the cells with the wild-type and recombinant viral constructs. We have previously demonstrated that the nature of the oligosaccharide assembled on Asn289 of HPg expressed in several lepidopteran insect cell lines was dependent on the time of infection of the cells with r-BAC/HPg and that the amount of complex glycan found on this recombinant protein increased with an increase in infection times [Davidson, D. J., & Castellino, F. J. (1991) Biochemistry 30, 6167-6174].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
G W Wertz  M Krieger    L A Ball 《Journal of virology》1989,63(11):4767-4776
The synthesis of the extensively O-glycosylated attachment protein, G, of human respiratory syncytial virus and its expression on the cell surface were examined in a mutant Chinese hamster ovary (CHO) cell line, ldlD, which has a defect in protein O glycosylation. These cells, used in conjunction with an inhibitor of N-linked oligosaccharide synthesis, can be used to establish conditions in which no carbohydrate addition occurs or in which either N-linked or O-linked carbohydrate addition occurs exclusively. A recombinant vaccinia virus expression vector for the G protein was constructed which, as well as containing the human respiratory syncytial virus G gene, contained a portion of the cowpox virus genome that circumvents the normal host range restriction of vaccinia virus in CHO cells. The recombinant vector expressed high levels of G protein in both mutant ldlD and wild-type CHO cells. Several immature forms of the G protein were identified that contained exclusively N-linked or O-linked oligosaccharide side chains. Metabolic pulse-chase studies indicated that the pathway of maturation for the G protein proceeds from synthesis of the 32-kilodalton (kDa) polypeptide accompanied by cotranslational attachment of high-mannose N-linked sugars to form an intermediate with an apparent mass of 45 kDa. This step is followed by the Golgi-associated conversion of the N-linked sugars to the complex type and the completion of the O-linked oligosaccharides to achieve the mature 90-kDa form of G. Maturation from the 45-kDa N-linked form to the mature 90-kDa form occurred only in the presence of O-linked sugar addition, confirming that O-linked oligosaccharides constitute a significant proportion of the mass of the mature G protein. In the absence of O glycosylation, forms of G bearing galactose-deficient truncated N-linked and fully mature N-linked oligosaccharides were observed. The effects of N- and O-linked sugar addition on the transport of G to the cell surface were measured. Indirect immunofluorescence and flow cytometry showed that G protein could be expressed on the cell surface in the absence of either O glycosylation or N glycosylation. However, cell surface expression of G lacking both N- and O-linked oligosaccharides was severely depressed.  相似文献   

16.
Cell lines established from the Lepidopteran insect Spodoptera frugiperda (e.g., Sf9) are used routinely as hosts for the expression of foreign proteins by baculovirus vectors. Previously, we showed that human tissue plasminogen activator (t-PA) was expressed, N-glycosylated, and secreted by Sf9 cells infected with a recombinant baculovirus (Jarvis DL, Summers MD: Mol Cell Biol 9:214-223, 1989). We also showed that t-PA secretion was blocked by tunicamycin (TM), an inhibitor of N-glycosylation, but not by castanospermine (CS) or N-methyldeoxynojirimycin, inhibitors of the initial steps in N-linked oligosaccharide processing. This suggested that the addition, but not the processing, of N-linked oligosaccharides is required for the secretion of recombinant t-PA from baculovirus-infected Sf9 cells. In this study, we present a more generalized evaluation of the role of N-glycosylation in the transport of recombinant glycoproteins through the Sf9 cell secretory pathway. Several different secretory or membrane-bound glycoproteins were expressed in control, TM-treated, or CS-treated Sf9 cells, and their appearance in the medium or on the cell surface was measured. The results showed that TM blocked the transport of some, but not all, of these proteins, whereas CS did not block the transport of any. This suggests that N-glycosylation is sometimes required for the transport of recombinant glycoproteins through the Sf9 secretory pathway, while processing of the oligosaccharides is not. At least two other proteins, p80 and p31, consistently coimmunoprecipitated with the nonglycosylated precursors of recombinant glycoproteins expressed in TM-treated Sf9 cells. Neither was antigenically related to any of the recombinant proteins. Relatively larger amounts of p80 and p31 were coprecipitated when transport was completely blocked by TM compared to when transport was only reduced or was unaffected. These results suggest that p80 and p31 block the transport of some nonglycosylated glycoprotein precursors in TM-treated Sf9 cells by binding to them and producing transport-incompetent heterooligomeric complexes. If this speculation is correct, then p80 and p31 are functionally analogous to the mammalian immunoglobulin heavy chain binding/glucose-regulated 78 kilodalton protein (BiP/GRP78).  相似文献   

17.
Glycoproteins have various biological functions including enzymatic activity, protein stability and others. Due to the presence of paucimannosidic N-linked glycans, recombinant proteins from an insect cell expression system may not be suitable for therapeutic use. Because baculovirus expression systems (BESs) are used to produce recombinant proteins, it is of interest to modify the endogenous N-glycosylation pathway in insects to mimic that of mammals. Using a soaking RNAi sensitive cell line, BmN4-SID1, has enabled us to suppress Bombyx mori FDL (BmFDL), an N-linked glycan-specific β-N-acetylglucosaminidase. Western blotting and MALDI-TOF MS demonstrated that the BmFDL depletion almost completely converted the paucimannosidic structures of the recombinant proteins produced by BES into a complex-type structure. This highly efficient, simple and low-cost method can be used for mass production of secretion proteins with complex-type N-linked glycans.  相似文献   

18.
In the past decades, a large number of studies in mammalian cells have revealed that processing of glycoproteins is compartmentalized into several subcellular organelles that process N-glycans to generate complex-type oligosaccharides with terminal N -acetlyneuraminic acid. Recent studies also suggested that processing of N-glycans in insect cells appear to follow a similar initial pathway but diverge at subsequent processing steps. N-glycans from insect cell lines are not usually processed to terminally sialylated complex-type structures but are instead modified to paucimannosidic or oligomannose structures. These differences in processing between insect cells and mammalian cells are due to insufficient expression of multiple processing enzymes including glycosyltransferases responsible for generating complex-type structures and metabolic enzymes involved in generating appropriate sugar nucleotides. Recent genomics studies suggest that insects themselves may include many of these complex transferases and metabolic enzymes at certain developmental stages but expression is lost or limited in most lines derived for cell culture. In addition, insect cells include an N -acetylglucosaminidase that removes a terminal N -acetylglucosamine from the N-glycan. The innermost N -acetylglucosamine residue attached to asparagine residue is also modified with alpha(1,3)-linked fucose, a potential allergenic epitope, in some insect cells. In spite of these limitations in N-glycosylation, insect cells have been widely used to express various recombinant proteins with the baculovirus expression vector system, taking advantage of their safety, ease of use, and high productivity. Recently, genetic engineering techniques have been applied successfully to insect cells in order to enable them to produce glycoproteins which include complex-type N-glycans. Modifications to insect N-glycan processing include the expression of missing glycosyltransferases and inclusion of the metabolic enzymes responsible for generating the essential donor sugar nucleotide, CMP- N -acetylneuraminic acid, required for sialylation. Inhibition of N -acetylglucosaminidase has also been applied to alter N-glycan processing in insect cells. This review summarizes current knowledge on N-glycan processing in lepidopteran insect cell lines, and recent progress in glycoengineering lepidopteran insect cells to produce glycoproteins containing complex N-glycans.  相似文献   

19.
We have purified recombinant murine interleukin 5 (rmIL-5) from the supernatant of Chinese hamster ovary cells. Each peptide fragment of the purified rmIL-5 generated by Achromobacter protease I digestion was characterized and glycosylation sites were determined. Although rmIL-5 contains three potential sites of N-linked glycosylation (Asn-26, Asn-55 and Asn-69), Asn-69 is not glycosylated. The oligosaccharides released from the protein by hydrazinolysis were fractionated by paper electrophoresis, lectin column chromatography and gel permeation chromatography, and their structures were analysed by sequential exoglycosidase digestion in combination with methylation analysis. The results indicated that they are a mixture of bi-, tri- and tetraantennary complex-type sugar chains with and without a fucose at the C-6 position of the proximal N-acetylglucosamine residue and high-mannose-type sugar chains. Although > 80% of the sugar chains are neutral oligosaccharides similar to recombinant human IL-5 (rhIL-5; Kodama, S., Endo, T., Tsuroka, N., Tsujimoto, M. and Kobata, A. (1991) J. Biochem., 110, 693-701), rmIL-5 has more tetraantennary oligosaccharides than rhIL-5. A site differential study revealed that Asn-55 has more tetraantennary oligosaccharides than Asn-26.  相似文献   

20.
Shi X  Elliott RM 《Journal of virology》2004,78(10):5414-5422
The membrane glycoproteins Gn and Gc of Hantaan virus (HTNV) (family Bunyaviridae) are modified by N-linked glycosylation. The glycoproteins contain six potential sites for the attachment of N-linked oligosaccharides, five sites on Gn and one on Gc. The properties of the N-linked oligosaccharide chains were analyzed by treatment with endoglycosidase H, peptide:N-glycosidase F, tunicamycin, and deoxynojirimycin and were confirmed to be completely of the high-mannose type. Ten glycoprotein gene mutants were constructed by site-directed mutagenesis, including six single N glycosylation site mutants and four double-site mutants. We determined that four sites (N134, -235, -347, and -399) on Gn and the only site (N928) on Gc in their ectodomains are utilized, whereas the fifth site on Gn (N609), which faces the cytoplasm, is not glycosylated. The importance of individual N-oligosaccharide chains varied with respect to folding and intracellular transport. The oligosaccharide chain on residue N134 was found to be crucial for protein folding, whereas single mutations at the other glycosylation sites were better tolerated. Mutation at glycosylation sites N235 and N399 together resulted in Gn misfolding. The endoplasmic reticulum chaperones calnexin and calreticulin were found to be involved in HTNV glycoprotein folding. Our data demonstrate that N-linked glycosylation of HTNV glycoproteins plays important and differential roles in protein folding and intracellular trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号