首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Factors Affecting Transfection in Bacillus stearothermophilus   总被引:2,自引:0,他引:2       下载免费PDF全文
The conditions for the infection of Bacillus stearothermophilus 4S with TP-1C phage deoxyribonucleic acid (DNA) are described. Cells from log-phase cultures are the most susceptible to phage DNA infection (transfection). A cellular component (competence factor) which enhances transfection is released into the culture medium during the transition period between the log and stationary phase of growth. Transfection is stimulated in the order of decreasing effectiveness, by Fe(3+), Mn(2+), and Mg(2+). The efficiency of transfection is the highest in cells growing at 60.5 C and does not occur in cells growing at 67 C although the cells are growing normally. A cellular component (competence factor) of this organism, which is released into the culture medium, advances by 40 min some step in the uptake of phage DNA.  相似文献   

4.
5.
A simian virus 40-based shuttle vector was used to characterize UV-induced mutations generated in mammalian cells. The small size and placement of the mutagenesis marker (the supF suppressor tRNA gene from Escherichia coli) within the vector substantially reduced the frequency of spontaneous mutations normally observed after transfection of mammalian cells with plasmid DNA; hence, UV-induced mutations were easily identified above the spontaneous background. UV-induced mutations characterized by DNA sequencing were found primarily to be base substitutions; about 56% of these were single-base changes, and 17% were tandem double-base changes. About 24% of the UV-induced mutants carried multiple mutations clustered within the 160-base-pair region sequenced. The majority (61%) of base changes were the G . C----A . T transitions; the other transition (A . T----G . C) and all four transversions occurred at about equal frequencies. Hot spots for UV mutagenesis did not correspond to hot spots for UV-induced photoproduct formation (determined by a DNA synthesis arrest assay); in particular, sites of TT dimers were underrepresented among the UV-induced mutations. These observations suggest to us that the DNA polymerase(s) responsible for mutation induction exhibits a localized loss of fidelity in DNA synthesis on UV-damaged templates such that it synthesizes past UV photoproducts, preferentially inserting adenine, and sometimes misincorporates bases at undamaged sites nearby.  相似文献   

6.
Cells of a human RSa cell line, with high sensitivity to UV killing and low capacity for DNA repair, when pretreated with 1-100 units/ml of human interferon (HuIFN) preparations for more than 12 h before irradiation, acquired an enhancement of UV-induced DNA-repair replication synthesis in association with recovery from inhibition of total cellular DNA synthesis and UV survival. Prompt and transient induction of plasminogen activator activities was also found within 5 min after UV irradiation in the cells pretreated with HuIFN but not in the cells non-pretreated with HuIFN. The enhancement and induction effects of HuIFN were observed, irrespective of the kind of HuIFN preparation used (alpha, beta or gamma, and natural or recombinant) and in other UV-sensitive fibroblast cells which were derived from Cockayne syndrome and xeroderma pigmentosum fibroblasts (XP1KY). However, all of the enhancement of DNA-repair synthesis and the induction of plasminogen activator activities by HuIFN was suppressed by treatment with cycloheximide immediately after UV irradiation.  相似文献   

7.
It was demonstrated previously that the synthesis of small nuclear RNA (snRNA) species U1 and U2 in human cells is very sensitive to UV radiation. In the present work, the UV sensitivity of U3, U4, and U5 snRNA synthesis is shown to be also high. The synthesis of U1, U2, U3, U4, and U5 snRNAs progressively decreased during the first 2 h after UV irradiation (this was not observed in polyadenylated RNA) and had not returned to normal rates 6 h after UV exposure. In contrast, the restoration of 5.8S rRNA synthesis began immediately after UV irradiation and was essentially complete 6 h later. A small fraction of U1 and U5 (and possibly U2 and U3) snRNA synthesis remained unaffected by high UV doses, when cell radiolabeling began 10 min after UV irradiation. The present data suggest that a factor other than the level of pyrimidine dimers in DNA (possibly, steps in the post-irradiation DNA repair process) plays an important role in the mechanism of UV-induced inhibition of U1-U5 snRNA synthesis.  相似文献   

8.
D V Amla 《Mutation research》1983,107(2):229-238
Synchrony with respect to cell division and DNA synthesis in cultures of Anacystis nidulans was induced by a light-dark-light regimen. At periodic intervals in the cell-division cycle, DNA, RNA, protein contents, UV sensitivity and induction of mutations were assayed. The DNA, RNA and protein syntheses were periodic and reached maximal values before the separation of cells. The DNA content started to increase at about the 5th hour and doubled at about the 13th hour followed by a plateau of 4-6 h. Wild-type A. nidulans was highly sensitive to UV radiation during the period showing an increase in cell number (rise phase) and the early part of DNA synthesis (synthetic phase). Significant resistance to UV, however, developed in the later stage of the DNA synthesis. This resistance decreased considerably during the next rise phase. On the other hand, in a UV-sensitive strain of A. nidulans (uvs67) there was no appreciable change in the UV sensitivity during the cell-division and DNA-synthesis phases. Induction of mutation frequency patterns of all the markers (fil, blu, yel, vir, nit, strR) in the wild-type showed a short initial lag followed by an abrupt increase resulting in a peak of mutation frequency in the early part of DNA synthesis and subsequently a second plateau. The induction of mutation frequencies in the uvs67 strain was comparatively low and remained constant throughout the cell division cycle. These results suggest the possibilities of an error-prone dark repair and a stringent relationship between DNA replication and repair of UV damage for expression of mutations in cyanobacterium A. nidulans.  相似文献   

9.
10.
Puromycin aminonucleoside (PAN) increased significantly the mutation rate of Escherichia coli B/r strains when used in conjunction with certain ultraviolet dosages. PAN (2.5 mM) when added to the post-irradiation medium of hcr+ cells slowed down RNA synthesis to 65%, protein to 76% and DNA to 48% of the control rate. Purine ribosides such as adenosine decreased the inhibitory action of PAN on DNA, RNA and protein synthesis. Quantitatively quite different results were obtained with the hcr- strains. PAN did not increase killing of UV, but decreased the frequency of UV-induced mutations. Antimutagenic purine ribosides decreased the synergistic mutagenic activity of PAN. Increases in DNA synthesis in the presence of antimutagens correspond to reductions in the rate of mutation to streptomycin resistance. The excision of UV-induced pyrimidine dimers was investigated in the presence and absence of PAN. The pattern of repair-inhibition reversion of pre-mutagenic lesions by adenosine suggests that PAN behaves as a feedback inhibitor of purine biosynthesis in UV-irradiated cells. It is probable that this inhibition results in an impairment of repair which produces the increase in mutant numbers.  相似文献   

11.
Host-controlled restriction and modification of TP-1C phage and infectious phage DNA occurs in Bacillus stearothermophilus and is subject to control by TP-8 or TP-12 prophage.  相似文献   

12.
Differentiation of Acanthamoeba castellanii into dormant cysts occurs spontaneously in stationary phase cultures, or can be induced experimentally by starvation. Although no further increase in cell density occurred after induction in either case, incorporation of [H]thymidine into DNA continued at a reduced rate through the period when differentiated products (cyst wall components) were formed. No net accumulation of DNA occurred during differentiation, indicating that the DNA synthesis occurring at this time was balanced by breakdown. When either 5-fluorodeoxyuridine (FUdR) or hydroxyurea was added to exponentially growing cultures, growth was terminated and the subsequent spontaneous encystment was delayed in comparison with untreated stationary phase cultures. A similar delay was observed for experimentally induced encystment of FUdR-pretreated cells. In all cases, delay of encystment was correlated with inhibition of 32PO4 incorporation into DNA, and unexpectedly also into RNA. Addition of FUdR at zero-time of experimental induction of cells not previously exposed to FUdR, on the other hand, had no effect on encystment or on 32PO4 incorporation. The delay of encystment produced by FUdR and hydroxyurea, therefore, appeared to reflect a requirement for normal synthesis of DNA and/or RNA not only during encystment, but also during the period of exponential growth just before encystment induction.  相似文献   

13.
14.
15.
Fos is an essential component of the mammalian UV response.   总被引:26,自引:5,他引:21       下载免费PDF全文
  相似文献   

16.
A 90 min inhibition of protein synthesis induced by starvation for amino acids (AA-) or by treatment with chloramphenicol (CAP) prior to UV irradiation (2.5 J m-2) increased the resistance of the strainEscherichia coli K12 SR19 to UV radiation more than ten-fold. Under these conditions, cultures in which protein synthesis was inhibited before the UV irradiation rejoin short regions of DNA synthesized after the irradiation to a normal-size molecule, whereas an exponentially growing culture does not rejoin DNA synthesized after UV irradiation to a molecule of a normal size. In the exponentially growing culture both the parental and the newly synthesized DNA are unstable after the irradiation. In cultures with inhibited protein synthesis only the parental DNA is somewhat unstable. InEscherichia coli K12 SR19 where protein synthesis was inhibited before the irradiation, a correlation between the survival of cells, the ability to rejoin short regions of DNA synthesized after UV irradiation and a higher stability of both parental and newly synthesized DNAs could be demonstrated.  相似文献   

17.
18.
The effects of ultraviolet (UV) light on cell morphology, deoxyribonucleic acid (DNA) synthesis, and protein synthesis in UV-sensitive and UV-resistant strains of Haemophilus influenzae were examined. Relatively low doses of UV induce lyses in the sensitive strains but not in the resistant mutant; however, UV temporarily blocks cell division of the resistant mutant, and elongated cells are formed after a period of incubation. Low doses of UV do not stop DNA synthesis in any of the strains examined; however, they do slow the rate of DNA synthesis in a manner consistent with the model correlating the kinetics of postirradiation DNA synthesis with the cell's ability to repair UV-induced DNA lesions. The data are not consistent with a model in which UV causes all DNA synthesis to stop for a time linearly dependent on dose.  相似文献   

19.
Changes in DNA, RNA and protein content, incorporation of 3H-thymidine, 14C-uridine and 3H-leucine and template activity of chromatin were investigated in the early process of somatic embryogenesis in a carrot (Daucus carota L. cv. Kurodagosun) cell suspension culture using a synchronous system. An embryogenetic culture in a medium containing 10-7M zeatin was compared with a non-embryogenetic culture in a medium containing 10-7M zeatin and 5 x 10-7M 2,4-D. DNA was synthesized very actively prior to and during the formation of globular embryos in the embryogenetic culture. The RNA and protein content per tube increased at an almost constant rate in both cultures, while the rate of incorporation of labelled precursors of RNA and protein rose much more prior to active DNA synthesis in the embryogenetic culture than in the non-embryogenetic culture. Template activity of chromatin was high in the early stage of embryogenesis in the embryogenetic culture. The results obtained here showed that synthesis and turnover of RNA and protein became active prior to active DNA synthesis in the early stage of embryogenesis, and that these changes at macromolecular levels may play important roles in embryogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号