首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Knowledge of the highly regulated processes governing the production of flagella in Bacillus subtilis is the result of several observations obtained from growing this microorganism in liquid cultures. No information is available regarding the regulation of flagellar formation in B. subtilis in response to contact with a solid surface. One of the best-characterized responses of flagellated eubacteria to surfaces is swarming motility, a coordinate cell differentiation process that allows collective movement of bacteria over solid substrates. This study describes the swarming ability of a B. subtilis hypermotile mutant harboring a mutation in the ifm locus that has long been known to affect the degree of flagellation and motility in liquid media. On solid media, the mutant produces elongated and hyperflagellated cells displaying a 10-fold increase in extracellular flagellin. In contrast to the mutant, the parental strain, as well as other laboratory strains carrying a wild-type ifm locus, fails to activate a swarm response. Furthermore, it stops to produce flagella when transferred from liquid to solid medium. Evidence is provided that the absence of flagella is due to the lack of flagellin gene expression. However, restoration of flagellin synthesis in cells overexpressing sigma(D) or carrying a deletion of flgM does not recover the ability to assemble flagella. Thus, the ifm gene plays a determinantal role in the ability of B. subtilis to contact with solid surfaces.  相似文献   

2.
3.
Undomesticated strains of Bacillus subtilis, but not laboratory strains, exhibit robust swarming motility on solid surfaces. The failure of laboratory strains to swarm is caused by a mutation in a gene (sfp) needed for surfactin synthesis and a mutation(s) in an additional unknown gene(s). Insertional mutagenesis of the undomesticated 3610 strain with the transposon mini-Tn10 was carried out to discover genes needed for swarming but not swimming motility. Four such newly identified swarming genes are reported, three of which (swrA, swrB, and efp) had not been previously characterized and one of which (swrC) was known to play a role in resistance to the antibacterial effect of surfactin. Laboratory strains were found to harbour a frameshift mutation in the swrA gene. When corrected for the swrA mutation, as well as the mutation in sfp, laboratory strains regained the capacity to swarm and did so as robustly as the wild strain. The swrA mutation was an insertion of an A:T base pair in a homopolymeric stretch of eight A:T base pairs, and readily reverted to the wild type. These findings suggest that the swrA insertion and its reversion take place by slipped-strand mispairing during DNA replication and that swarming motility is subject to phase variation.  相似文献   

4.
Autoregulation of swrAA and motility in Bacillus subtilis   总被引:1,自引:0,他引:1  
  相似文献   

5.
6.
7.
Serratia marcescens exists in two cell forms and displays two kinds of motility depending on the type of growth surface encountered (L. Alberti and R. M. Harshey, J. Bacteriol. 172:4322-4328, 1990). In liquid medium, the bacteria are short rods with few flagella and show classical swimming behavior. Upon growth on a solid surface (0.7 to 0.85% agar), they differentiate into elongated, multinucleate, copiously flagellated forms that swarm over the agar surface. The flagella of swimmer and swarmer cells are composed of the same flagellin protein. We show in this study that disruption of hag, the gene encoding flagellin, abolishes both swimming and swarming motility. We have used transposon mini-Mu lac kan to isolate mutants of S. marcescens defective in both kinds of motility. Of the 155 mutants obtained, all Fla- mutants (lacking flagella) and Mot- mutants (paralyzed flagella) were defective for both swimming and swarming, as expected. All Che- mutants (chemotaxis defective) were also defective for swarming, suggesting that an intact chemotaxis system is essential for swarming. About one-third of the mutants were specifically affected only in swarming. Of this class, a large majority showed active "swarming motility" when viewed through the microscope (analogous to the active "swimming motility" of Che- mutants) but failed to show significant movement away from the site of initial inoculation on a macroscopic scale. These results suggest that bacteria swarming on a solid surface require many genes in addition to those required for chemotaxis and flagellar function, which extend the swarming movement outward. We also show in this study that nonflagellate S. marcescens is capable of spreading rapidly on low-agar media.  相似文献   

8.
9.
The linkage relationship of mutants involved in the synthesis of flagella was determined by PBSl transduction. Mutants that affect the structure of flagellin (hag) and temperature-sensitive mutants (flaTS) that produce flagella when grown at 37 C but not when grown at 46 C were examined. All of the mutants were found to be linked to the hisA1 marker. The flaTS mutants fell into three clusters. Group A contained the majority of mutants which were loosely grouped around the hag locus. Group B mutants were segregated from the hag locus and appeared closely linked to the phage adsorption site gene (gtaA), and group C was only loosely linked to hisA1 and thus far contains only one mutant. A flagella locus (ifm) affecting both the degree of motility and level of flagellation was shown to map near group A. Mutants affecting motility (mot) were not linked to hisA1 by PBSl transduction. Several markers previously shown to link to hisA1 were ordered with respect to hisA1 and the flagellar genes.  相似文献   

10.
The ability to move over and colonize surface substrata has been linked to the formation of biofilms and to the virulence of some bacterial pathogens. Results from this study show that the gastrointestinal pathogen Yersinia enterocolitica can migrate over and colonize surfaces by swarming motility, a form of cooperative multicellular behavior. Immunoblot analysis and electron microscopy indicated that swarming motility is dependent on the same flagellum organelle that is required for swimming motility, which occurs in fluid environments. Furthermore, motility genes such as flgEF, flgMN, flhBA, and fliA, known to be required for the production of flagella, are essential for swarming motility. To begin to investigate how environmental signals are processed and integrated by Y. enterocolitica to stimulate the production of flagella and regulate these two forms of cell migration, the motility master regulatory operon, flhDC, was cloned. Mutations within flhDC completely abolished swimming motility, swarming motility, and flagellin production. DNA sequence analysis revealed that this locus is similar to motility master regulatory operons of other gram-negative bacteria. Genetic complementation and functional analysis of flhDC indicated that it is required for the production of flagella. When flhDC was expressed from an inducible ptac promoter, flagellin production was shown to be dependent on levels of flhDC expression. Phenotypically, induction of the ptac-flhDC fusion also corresponded to increased levels of both swimming and swarming motility.  相似文献   

11.
Type-4 fimbriae (pili) are associated with a phenomenon known as twitching motility, which appears to be involved with bacterial translocation across solid surfaces. Pseudomonas aeruginosa mutants which produce fimbriae, but which have lost the twitching motility function, display altered colony morphology and resistance to fimbrial-specific bacteriophage. We have used phenotypic complementation of such mutants to isolate a region of DNA involved in twitching motility. This region was physically mapped to a SpeI fragment around 20 min on the P. aeruginosa PAO chromosome, remote from the major fimbrial locus (around 75 min) where the structural subunit-encoding gene (fimA/pilA) and ancillary genes required for fimbrial assembly (pilB, C and D) are found. A gene, pilT, within the twitching motility region is predicted to encode a 344-amino acid protein which has strong homology to a variety of other bacterial proteins. These include the P. aeruginosa PilB protein, the ComG ORF-1 protein from the Bacillus subtilis comG operon (necessary for competence), the PulE protein from the Klebsiella oxytoca (formerly K. pneumoniae) pulC-O operon (involved in pullulanase export), and the VirB-11 protein from the virB operon (involved in virulence) which is located on the Agrobacterium tumefaciens Ti plasmid. We have also identified other sets of homologies between P. aeruginosa fimbrial assembly (Pil) proteins and B. subtilis Com and K. oxytoca Pul proteins, which suggest that these are all related members of a specialised protein export pathway which is widespread in the eubacteria.  相似文献   

12.
13.
The stator-force generator that drives Na+-dependent motility in alkaliphilic Bacillus pseudofirmus OF4 is identified here as MotPS, MotAB-like proteins with genes that are downstream of the ccpA gene, which encodes a major regulator of carbon metabolism. B. pseudofirmus OF4 was only motile at pH values above 8. Disruption of motPS resulted in a non-motile phenotype, and motility was restored by transformation with a multicopy plasmid containing the motPS genes. Purified and reconstituted MotPS from B. pseudofirmus OF4 catalysed amiloride analogue-sensitive Na+ translocation. In contrast to B. pseudofirmus, Bacillus subtilis contains both MotAB and MotPS systems. The role of the motPS genes from B. subtilis in several motility-based behaviours was tested in isogenic strains with intact motAB and motPS loci, only one of the two mot systems or neither mot system. B. subtilis MotPS (BsMotPS) supported Na+-stimulated motility, chemotaxis on soft agar surfaces and biofilm formation, especially after selection of an up-motile variant. BsMotPS also supported motility in agar soft plugs immersed in liquid; motility was completely inhibited by an amiloride analogue. BsMotPS did not support surfactin-dependent swarming on higher concentration agar surfaces. These results indicate that BsMotPS contributes to biofilm formation and motility on soft agar, but not to swarming, in laboratory strains of B. subtilis in which MotAB is the dominant stator-force generator. BsMotPS could potentially be dominant for motility in B. subtilis variants that arise in particular niches.  相似文献   

14.
15.
16.
Effect of chemical agents on swarming of Bacillus species   总被引:1,自引:0,他引:1  
The effect of 58 chemical compounds belonging to different categories, viz. antibiotics, detergents, surfactants, nutrients and salts of organic and inorganic acids, were tested on swarming of Bacillus species comprising B. coagulans, B. circulans, B. alvei and B. subtilis by spot inoculation method. Carbohydrates, vitamins, amino acids and other nutrient compounds such as peptone, with the exception of vitamin-free casamino acids induced considerable swarming. An inhibition of swarming was noticed by antiseptics, detergents and surfactants; but the extent of swarming differed among the chemicals tested, their concentration and the bacterial strains. Most of the compounds that inhibited swarming were those which acted on flagellar mechanism and motility. The results support the theory that formation of lateral flagella is a prerequisite for inhibition of swarming.  相似文献   

17.
18.
19.
20.
Rhodospirillum centenum is a photosynthetic bacterium capable of undergoing swim cell to swarm cell differentiation that allows this species to be motile on both liquid and solid media. Previous experiments have demonstrated that the che1 operon is required for the control of chemotactic and phototactic behaviour of both swim and swarm cells. In this report, we analyse the function of a second che-like gene cluster in R. centenum, the che2 gene cluster. In-frame deletion mutants of cheW2, cheB2, cheR2, cheY2, and of the entire che2 operon, exhibit defects in swim and swarm cell motility. Analysis of these strains demonstrates that they are non-motile, and that the non-motile phenotype is resulting from reduced polar and lateral flagella synthesis. Additionally, mutations in mcp2, ORF204, cheA2 and ORF74 remain chemotacticly and phototacticly competent at both high and low growth temperatures. Mutations in these che2 genes result in elevated levels of flagellin proteins giving rise to a hyperflagellate phenotype. We propose a model in which R. centenum utilizes a che-like signal transduction pathway (che2) for regulating flagellum synthesis in order to optimize swim cell-swarm cell differentiation in response to changing environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号