首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
The 90 kDa ribosomal S6 kinase-2 (RSK2) is a growth factor-stimulated protein kinase with two kinase domains. The C-terminal kinase of RSK2 is activated by ERK-type MAP kinases, leading to autophosphorylation of RSK2 at Ser386 in a hydrophobic motif. The N-terminal kinase is activated by 3-phosphoinositide-dependent protein kinase-1 (PDK1) through phosphorylation of Ser227, and phosphorylates the substrates of RSK. Here, we identify Ser386 in the hydrophobic motif of RSK2 as a phosphorylation-dependent docking site and activator of PDK1. Treatment of cells with growth factor induced recruitment of PDK1 to the Ser386-phosphorylated hydrophobic motif and phosphorylation of RSK2 at Ser227. A RSK2-S386K mutant showed no interaction with PDK1 or phosphorylation at Ser227. Interaction with Ser386-phosphorylated RSK2 induced autophosphorylation of PDK1. Addition of a synthetic phosphoSer386 peptide (RSK2(373-396)) increased PDK1 activity 6-fold in vitro. Finally, mutants of RSK2 and MSK1, a RSK-related kinase, with increased affinity for PDK1, were constitutively active in vivo and phosphorylated histone H3. Our results suggest a novel regulatory mechanism based on phosphoserine-mediated recruitment of PDK1 to RSK2, leading to coordinated phosphorylation and activation of PDK1 and RSK2.  相似文献   

3.
4.
In myocardium, the 90-kDa ribosomal S6 kinase (RSK) is activated by diverse stimuli and regulates the sarcolemmal Na(+)/H(+) exchanger through direct phosphorylation. Only limited information is available on other cardiac RSK substrates and functions. We evaluated cardiac myosin-binding protein C (cMyBP-C), a sarcomeric regulatory phosphoprotein, as a potential RSK substrate. In rat ventricular myocytes, RSK activation by endothelin 1 (ET1) increased cMyBP-C phosphorylation at Ser(282), which was inhibited by the selective RSK inhibitor D1870. Neither ET1 nor D1870 affected the phosphorylation status of Ser(273) or Ser(302), cMyBP-C residues additionally targeted by cAMP-dependent protein kinase (PKA). Complementary genetic gain- and loss-of-function experiments, through the adenoviral expression of wild-type or kinase-inactive RSK isoforms, confirmed RSK-mediated phosphorylation of cMyBP-C at Ser(282). Kinase assays utilizing as substrate wild-type or mutated (S273A, S282A, S302A) recombinant cMyBP-C fragments revealed direct and selective Ser(282) phosphorylation by RSK. Immunolabeling with a Ser(P)(282) antibody and confocal fluorescence microscopy showed RSK-mediated phosphorylation of cMyBP-C across the C-zones of sarcomeric A-bands. In chemically permeabilized mouse ventricular muscles, active RSK again induced selective Ser(282) phosphorylation in cMyBP-C, accompanied by significant reduction in Ca(2+) sensitivity of force development and significant acceleration of cross-bridge cycle kinetics, independently of troponin I phosphorylation at Ser(22)/Ser(23). The magnitudes of these RSK-induced changes were comparable with those induced by PKA, which phosphorylated cMyBP-C additionally at Ser(273) and Ser(302). We conclude that Ser(282) in cMyBP-C is a novel cardiac RSK substrate and its selective phosphorylation appears to regulate cardiac myofilament function.  相似文献   

5.
Ovulated oocytes are arrested at the metaphase of second meiotic division. The metaphase-II arrest in Xenopus oocytes is regulated by RSKs located downstream of the Mos–MAPK pathway. In mice, other kinase(s) besides RSKs may be responsible for the metaphase-II arrest, because RSK1/RSK2/RSK3-triple knockout mice exhibit no obvious phenotype. Here, we show the subcellular localization and possible role of mitogen- and stress-activated kinase 1, MSK1 known as another downstream kinase of the Mos–MAPK pathway, in the mouse oocytes. Immunostaining analysis indicated that MSK1 is present in the germinal vesicle (GV) and cytoplasm of oocytes at the GV and metaphase-II stages, respectively. An active, phosphorylated form of MSK1 was predominantly localized to the metaphase-II spindle. The inhibition of the MSK1 activity failed to maintain the sister chromatid alignment within the metaphase-II plate. Importantly, MSK1 exhibited the ability to phosphorylate four Ser/Thr residues of meiotic cell-cycle regulator EMI2. The phosphorylation was required for up-regulation of the EMI2 activity in the oocytes. These results suggest that mouse MSK1 may play a key role in the metaphase-II arrest through phosphorylation of EMI2.  相似文献   

6.
We investigated the activation of mitogen-activated protein kinases (MAPKs) pathways by purinergic stimulation in cardiac myocytes from adult rat hearts. ATPS increased the phosphorylation (activation) of the extracellular signal regulated kinase 1 and 2 (ERK1/2) and p38 MAPK. ERK1/2 and p38 MAPK activation was differential, ERK1/2 being rapid and transient while that of p38 MAPK slow and sustained. Using selective inhibitors, activation of ERK1/2 was shown to involve protein kinase C and MEK1/2 while that of p38 MAPK was regulated by both protein kinase C and protein kinase A. Furthermore, we show that purinergic stimulation induces the phosphorylation of the MAPK downstream target, mitogen- and stress-activated protein kinase 1 (MSK1), in cardiac myocytes. The time course of MSK1 phosphorylation closely follows that of ERK activation. Inhibitors of the ERK and p38 MAPK pathways were tested on the phosphorylation of MSK1 at two different time points. The results suggest that ERKs initiate the response but both ERKs and p38 MAPK are required for the maintenance of the complete phosphorylation of MSK1. The temporal relationship of MSK1 phosphorylation and cPLA2 translocation induced by purinergic stimulation, taken together with previous findings, is an indication that cPLA2 may be a downstream target of MSK1.  相似文献   

7.
丝裂原和应激激活的蛋白激酶(MSK)是一类核内丝/苏氨酸蛋白激酶,参与丝裂原激活蛋白激酶(MAPK)信号通路介导的下游基因转录调控和表观遗传学调控.首先,MSK是MAPK通路的下游媒介分子.在丝裂原或应激刺激下,p38或ERK激酶通过级联磷酸化激活MSK蛋白.然后,活化的MSK介导转录因子磷酸化活化和组蛋白H3的10位丝氨酸磷酸化.MSK介导的组蛋白H3磷酸化,可引发组蛋白乙酰化和甲基化修饰的动态变化,相互协同或拮抗,开放染色质结构,利于诱导型基因的表达.除组蛋白H3外,MSK直接磷酸化的下游底物还包括CREB、NF-κB等转录因子以及多个非转录相关蛋白.因此,MSK能在多层次调控基因表达和细胞功能,广泛参与肿瘤转化、炎症反应、神经突触可塑性以及心肌肥大等生物学事件.本文将简要介绍MSK蛋白的研究进展,探讨其在转录调控、表观遗传学修饰等生物学事件中的作用.  相似文献   

8.
9.
The primary endpoint of signalling through the canonical Raf–MEK–ERK MAP kinase cascade is ERK activation. Here we report a novel signalling outcome for this pathway. Activation of the MAP kinase pathway by growth factors or phorbol esters during G2 phase results in only transient activations of ERK and p90RSK, then suppression to below control levels. A small peak of ERK and p90RSK activation in early G2 phase cells was identified, and inhibition of this delayed entry into mitosis. The previously identified, proteolytically cleaved form of MEK1 termed tMEK (truncated MEK1), is also induced with G2 phase MAPK pathway activation. We demonstrate that addition of recombinant mutants of MEK1 with an N-terminal truncation similar to that of tMEK also inhibited ERK and p90RSK activations and delayed progression into mitosis. Only catalytically inactive forms of tMEK were capable of these effects, but surprisingly, phosphorylation on the activating Ser218/222 sites was also required. A lack of MEK1 or ability to accumulate tMEK resulted in the absence of the feedback inhibition of ERK and p90RSK activations. tMEK is a novel output from the canonical MAP kinase signalling pathway, acting in a MAPK signalling-regulated dominant negative manner to inhibit ERK and p90RSK activations, acting as a dampening mechanism to reduce the magnitude or duration of MAPK pathway signalling in G2/M phase.  相似文献   

10.
The extent and duration of MAPK (mitogen-activated protein kinase) signalling govern a diversity of normal and aberrant cellular outcomes. Genetic and pharmacological disruption of the MAPK-activated kinase RSK (ribosomal S6 kinase) leads to elevated MAPK activity indicative of a RSK-dependent negative feedback loop. Using biochemical, pharmacological and quantitative MS approaches we show that RSK phosphorylates the Ras activator SOS1 (Son of Sevenless homologue 1) in cultured cells on two C-terminal residues, Ser1134 and Ser1161. Furthermore, we find that RSK-dependent SOS1 phosphorylation creates 14-3-3-binding sites. We show that mutating Ser1134 and Ser1161 disrupts 14-3-3 binding and modestly increases and extends MAPK activation. Together these data suggest that one mechanism whereby RSK negatively regulates MAPK activation is via site-specific SOS1 phosphorylation.  相似文献   

11.
M Deak  A D Clifton  L M Lucocq    D R Alessi 《The EMBO journal》1998,17(15):4426-4441
We have identified a novel mitogen- and stress-activated protein kinase (MSK1) that contains two protein kinase domains in a single polypeptide. MSK1 is activated in vitro by MAPK2/ERK2 or SAPK2/p38. Endogenous MSK1 is activated in 293 cells by either growth factor/phorbol ester stimulation, or by exposure to UV radiation, and oxidative and chemical stress. The activation of MSK1 by growth factors/phorbol esters is prevented by PD 98059, which suppresses activation of the MAPK cascade, while the activation of MSK1 by stress stimuli is prevented by SB 203580, a specific inhibitor of SAPK2/p38. In HeLa, PC12 and SK-N-MC cells, PD 98059 and SB 203580 are both required to suppress the activation of MSK1 by TNF, NGF and FGF, respectively, because these agonists activate both the MAPK/ERK and SAPK2/p38 cascades. MSK1 is localized in the nucleus of unstimulated or stimulated cells, and phosphorylates CREB at Ser133 with a Km value far lower than PKA, MAPKAP-K1(p90Rsk) and MAPKAP-K2. The effects of SB 203580, PD 98059 and Ro 318220 on agonist-induced activation of CREB and ATF1 in four cell-lines mirror the effects of these inhibitors on MSK1 activation, and exclude a role for MAPKAP-K1 and MAPKAP-K2/3 in this process. These findings, together with other observations, suggest that MSK1 may mediate the growth-factor and stress-induced activation of CREB.  相似文献   

12.
The Bcl-2 family member Bad is a pro-apoptotic protein, and phosphorylation of Bad by cytokines and growth factors promotes cell survival in many cell types. Induction of apoptosis by UV radiation is well documented. However, little is known about UV activation of cell survival pathways. Here, we demonstrate that UVB induces Bad phosphorylation at serine 112 in JNK1, RSK2, and MSK1-dependent pathways. Inhibition of mitogen-activated protein (MAP) kinases including ERKs, JNKs, and p38 kinase by the use of their respective dominant negative mutant or a specific inhibitor for MEK1 or p38 kinase, PD98059 or SB202190, resulted in abrogation of UVB-induced phosphorylation of Bad at serine 112. Incubation of active MAP kinase members with Bad protein showed serine 112 phosphorylation of Bad by JNK1 only. However, activated RSK2 and MSK1, downstream kinases of ERKs and p38 kinase, respectively, also phosphorylated Bad at serine 112 in vitro. Cells from a Coffin-Lowry syndrome patient (deficient in RSK2) or expressing an N-terminal or C-terminal kinase-dead mutant of MSK1 were defective for UVB-induced serine 112 phosphorylation of Bad. Furthermore, MAP kinase pathway-dependent serine 112 phosphorylation was shown to be required for dissociation of Bad from Bcl-X(L). These data illustrated that UVB-induced phosphorylation of Bad at serine 112 was mediated through MAP kinase signaling pathways in which JNK1, RSK2, and MSK1 served as direct mediators.  相似文献   

13.
The replication of viral nucleic acids triggers cellular antiviral responses. The double-stranded RNA (dsRNA)-activated protein kinase (PKR) plays a key role in this antiviral response. We have recently reported that JFH-1 HCV replication in Huh-7 cells triggers PKR activation. Here we show that the HCV-induced PKR activation is further stimulated by the mitogen- and stress-activated protein kinase 2 (MSK2), a member of the 90 kDa ribosomal S6 kinase (RSK) family that has emerged as an important downstream effector of ERK and p38 MAPK signaling pathways. We show that MSK2 binds PKR and stimulates PKR phosphorylation, whereas the closely related MSK1 and RSK2 have no effect. Our data further indicate that MSK2 functions as an adaptor in mediating PKR activation, apparently independent of its catalytic activity. These results suggest that, in addition to viral dsRNA, stress signaling contributes to the regulation of cellular antiviral response.  相似文献   

14.
Evidence is presented that RSK1 (ribosomal S6 kinase 1), a downstream target of MAPK (mitogen-activated protein kinase), directly phosphorylates nNOS (neuronal nitric oxide synthase) on Ser847 in response to mitogens. The phosphorylation thus increases greatly following EGF (epidermal growth factor) treatment of rat pituitary tumour GH3 cells and is reduced by exposure to the MEK (MAPK/extracellular-signal-regulated kinase kinase) inhibitor PD98059. Furthermore, it is significantly enhanced by expression of wild-type RSK1 and antagonized by kinase-inactive RSK1 or specific reduction of endogenous RSK1. EGF treatment of HEK-293 (human embryonic kidney) cells, expressing RSK1 and nNOS, led to inhibition of NOS enzyme activity, associated with an increase in phosphorylation of nNOS at Ser847, as is also the case in an in vitro assay. In addition, these phenomena were significantly blocked by treatment with the RSK inhibitor Ro31-8220. Cells expressing mutant nNOS (S847A) proved resistant to phosphorylation and decrease of NOS activity. Within minutes of adding EGF to transfected cells, RSK1 associated with nNOS and subsequently dissociated following more prolonged agonist stimulation. EGF-induced formation of the nNOS-RSK1 complex was significantly decreased by PD98059 treatment. Treatment with EGF further revealed phosphorylation of nNOS on Ser847 in rat hippocampal neurons and cerebellar granule cells. This EGF-induced phosphorylation was partially blocked by PD98059 and Ro31-8220. Together, these data provide substantial evidence that RSK1 associates with and phosphorylates nNOS on Ser847 following mitogen stimulation and suggest a novel role for RSK1 in the regulation of nitric oxide function in brain.  相似文献   

15.
16.
17.
Summary: The mitogen-activated protein kinases (MAPKs) regulate diverse cellular programs by relaying extracellular signals to intracellular responses. In mammals, there are more than a dozen MAPK enzymes that coordinately regulate cell proliferation, differentiation, motility, and survival. The best known are the conventional MAPKs, which include the extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun amino-terminal kinases 1 to 3 (JNK1 to -3), p38 (α, β, γ, and δ), and ERK5 families. There are additional, atypical MAPK enzymes, including ERK3/4, ERK7/8, and Nemo-like kinase (NLK), which have distinct regulation and functions. Together, the MAPKs regulate a large number of substrates, including members of a family of protein Ser/Thr kinases termed MAPK-activated protein kinases (MAPKAPKs). The MAPKAPKs are related enzymes that respond to extracellular stimulation through direct MAPK-dependent activation loop phosphorylation and kinase activation. There are five MAPKAPK subfamilies: the p90 ribosomal S6 kinase (RSK), the mitogen- and stress-activated kinase (MSK), the MAPK-interacting kinase (MNK), the MAPK-activated protein kinase 2/3 (MK2/3), and MK5 (also known as p38-regulated/activated protein kinase [PRAK]). These enzymes have diverse biological functions, including regulation of nucleosome and gene expression, mRNA stability and translation, and cell proliferation and survival. Here we review the mechanisms of MAPKAPK activation by the different MAPKs and discuss their physiological roles based on established substrates and recent discoveries.  相似文献   

18.
90-kDa ribosomal S6 kinase-2 (RSK2) belongs to a family of growth factor-activated serine/threonine kinases composed of two kinase domains connected by a regulatory linker region. The N-terminal kinase of RSK2 is involved in substrate phosphorylation. Its activation requires phosphorylation of the linker region at Ser(369), catalyzed by extracellular signal-regulated kinase (ERK), and at Ser(386), catalyzed by the C-terminal kinase, after its activation by ERK. In addition, the N-terminal kinase must be phosphorylated at Ser(227) in the activation loop by an as yet unidentified kinase. Here, we show that the isolated N-terminal kinase of RSK2 (amino acids 1-360) is phosphorylated at Ser(227) by PDK1, a constitutively active kinase, leading to 100-fold stimulation of kinase activity. In COS7 cells, ectopic PDK1 induced the phosphorylation of full-length RSK2 at Ser(227) and Ser(386), without involvement of ERK, leading to partial activation of RSK2. Similarly, two other members of the RSK family, RSK1 and RSK3, were partially activated by PDK1 in COS7 cells. Finally, our data indicate that full activation of RSK2 by growth factor requires the cooperation of ERK and PDK1 through phosphorylation of Ser(227), Ser(369), and Ser(386). Our study extend recent findings which implicate PDK1 in the activation of protein kinases B and C and p70(S6K), suggesting that PDK1 controls several major growth factor-activated signal transduction pathways.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号