首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteasomes play an important role in protein turnover in living cells. The inhibition of proteasomes affects cell cycle processes and induces apoptosis. Thus, 20 S proteasomal inhibitors are potential tools for the modulation of neoplastic growth. Based on MG132, a potent but nonspecific 20 S proteasome inhibitor, we designed and synthesized 22 compounds and evaluated them for the inhibition of proteasomes. The majority of the synthesized compounds reduced the hydrolysis of LLVY-7-aminomethylcoumarin peptide substrate in cell lysates, some of them drastically. Several compounds displayed inhibitory effects when tested in vitro on isolated 20 S proteasomes, with lowest IC(50) values of 58 nm (chymotrypsin-like activity), 53 nm (trypsin-like activity), and 100 nm (caspase-like activity). Compounds 16, 21, 22, and 28 affected the chymotrypsin-like activity of the beta5 subunit exclusively, whereas compounds 7 and 8 inhibited the beta2 trypsin-like active site selectively. Compounds 13 and 15 inhibited all three proteolytic activities. Compound 15 was shown to interact with the active site by x-ray crystallography. The potential of these novel inhibitors was assessed by cellular tolerance and biological response. HeLa cells tolerated up to 1 microm concentrations of all substances. Intracellular reduction of proteasomal activity and accumulation of polyubiquitinated proteins were observed for compounds 7, 13, 15, 22, 25, 26, 27, and 28 on HeLa cells. Four of these compounds (7, 15, 26, and 28) induced apoptosis in HeLa cells and thus are considered as promising leads for anti-tumor drug development.  相似文献   

2.
The proteasome is the main protease for extralysosomal protein degradation in eukaryotic cells, and constitutes a sophisticated high molecular mass proteinase complex underlying a tightly coordinated expression and assembly of multiple subunits and subcomplexes. Here we show that continuous inhibition of proteasomal chymotrypsin-like peptidase activity by the proteasome inhibitor bortezomib induces in human Namalwa Burkitt lymphoma cells increased de novo biogenesis of proteasomes accompanied by increased expression of the proteasome maturation protein POMP, increased expression of 19S-20S-19S proteasomes, and abrogation of expression of beta 1i, beta 2i and beta 5i immunosubunits and PA28 in favor of increased expression of constitutive proteolytic beta1, beta2 and beta 5 subunits and 19S regulatory complexes. These alterations of proteasome expression and subunit composition are accompanied by an increase in proteasomal caspase-like, trypsin-like and chymotrypsin-like peptidase activities, not inhibitable by high doses of bortezomib. Cells harboring these proteasomal alterations display rapid proliferation and cell cycle progression, and acquire resistance to apoptosis induced by proteasome inhibitors, gamma-irradiation and staurosporine. This acquired apoptosis resistance is accompanied by de novo expression of anti-apoptotic Hsp27 protein and the loss of ability to accumulate and stabilize pro-apoptotic p53 protein. Thus, increased expression, altered subunit composition and increased activity of proteasomes constitute a hitherto unknown adaptive and autoregulatory feedback mechanism to allow cells to survive the lethal challenge of proteasome inhibition and to establish a hyperproliferative and apoptosis-resistant phenotype.  相似文献   

3.
Because of its crucial role in various cellular processes, the proteasome is the focus of intensive research for the development of proteasome inhibitors to treat cancer and autoimmune diseases. Here, we describe a new and easy assay to measure the different proteasome activities in vitro (chymotrypsin-like, caspase-like, and trypsin-like) based on proteasome capture on antibody-coated plates, namely the capture proteasome assay (CAPA). Applying the CAPA to lysates from cells expressing standard proteasome, immunoproteasome, or intermediate proteasomes β5i or β1i–β5i, we can monitor the activity of the four proteasome subtypes. The CAPA provided similar results as the standard whole-cell proteasome–Glo assay without the problem of contaminating proteases requiring inhibitors. However, the profile of trypsin-like activity differed between the two assays. This could be partly explained by the presence of MgSO4 in the proteasome–Glo buffer, which inhibits the trypsin-like activity of the proteasome. The CAPA does not need MgSO4 and, therefore, provides a more precise measurement of the trypsin-like activity. The CAPA provides a quick and accurate method to measure proteasome activity in vitro in a very specific manner and should be useful for the development of proteasome inhibitors.  相似文献   

4.
During conjugation in the binucleate ciliate, Tetrahymena thermophila, the old macronucleus is eliminated as new macronuclei and micronuclei are ontogenetically derived from the zygote nucleus. The mechanism of programmed nuclear elimination in ciliates may be related to the mechanism of apoptosis in higher organisms since its chromatin undergoes major condensation, its DNA is digested into nucleosome-sized fragments, and it stains positively for TUNEL. The present study explores whether caspases are involved in programmed macronuclear degradation in Tetrahymena. We show here that caspase-like activity is detectable using two specific colorimetric substrates, and that the activity is reduced with specific caspase inhibitors. In addition, using the fluorigenic substrate PhiPhiLux, active caspase-like activity is detected in living cells, localized to cytoplasmic vesicles; activity is not detected in pre- or post-condensed macronuclei. Finally, three different inhibitors of caspase activity cause a block to macronuclear chromatin condensation and elimination. Therefore, a caspase-like enzyme activity is necessary for regulating macronuclear elimination in Tetrahymena. These data support the possibility that macronuclear elimination is related, evolutionarily, to regulated cell death in multicellular organisms.  相似文献   

5.
The eukaryotic 20 S proteasome contains the following 6 active sites: 2 chymotrypsin-like, 2 trypsin-like, and 2 caspase-like. We previously showed that hydrophobic peptide substrates of the chymotrypsin-like sites allosterically stimulate peptide hydrolysis by the caspase-like sites and their own cleavage. More thorough analysis revealed that these peptides also stimulate peptide hydrolysis by the trypsin-like site. This general activation by hydrophobic peptides occurred even if the chymotrypsin-like sites were occupied by a covalent inhibitor and was highly cooperative, with an average Hill coefficient of 7. Therefore, this stimulation of peptide hydrolysis at all active sites occurs upon binding of hydrophobic peptides to several non-catalytic sites. The stimulation by hydrophobic peptides was not observed in the yeast Delta N alpha 3 mutant 20 S proteasomes, in 20 S-PA26 complexes, or SDS-activated proteasomes and was significantly lower in 26 S proteasomes, all of which appear to have the gated channel in the alpha-rings in an open conformation and hydrolyze peptides at much faster rates than 20 S proteasomes. Also the hydrophobic peptides altered K(m), V(max) of active sites in a similar fashion as PA26 and the Delta N alpha 3 mutation. The activation by hydrophobic peptides was decreased in K(+)-containing buffer, which favors the closed state of the channels. Therefore, hydrophobic peptides stimulate peptide hydrolysis most likely by promoting the opening of the channels in the alpha-rings. During protein breakdown, this peptide-induced channel opening may function to facilitate the release of products from the proteasome.  相似文献   

6.
Proteasomes play a major role in intracellular protein degradation and have been implicated in apoptosis. In this study we have investigated proteasome activity and the effects of inhibition of proteasomes or modulation of proteasome complexes on staurosporine-induced apoptosis in COS-7 cells. Staurosporine treatment of COS-7 cells had little direct effect on proteasome activity and did not cause dissociation of 26S proteasomes. There was also no major redistribution of proteasomes accompanying apoptosis in COS-7 cells. However, when the cells were pretreated with proteasome inhibitors, both the caspase 3 activity of the cells and the percentage of apoptotic cells measured by the TUNEL assay were reduced compared to staurosporine-treated cells, which had no inhibitor added. Proteasome inhibitors were also found to reduce the activation of caspase 3 in living cells which was assayed using a FRET-based method. However, proteasome inhibitors did not prevent some of the morphological changes associated with staurosporine-induced apoptosis. Pretreatment of cells with gamma-interferon, which increases immunoproteasomes and PA28 complexes and reduces 26S proteasome levels, had an antiapoptotic effect. These results are consistent with a role for 26S proteasomes in regulating the activation of caspase 3 through the degradation of key regulatory proteins.  相似文献   

7.
People with diabetes experience chronic hyperglycemia and are at a high risk of developing atherosclerosis and microvascular disease. Reactions of glucose, or aldehydes derived from glucose (e.g. methylglyoxal, glyoxal, or glycolaldehyde), with proteins result in glycation that ultimately yield advanced glycation end products (AGE). AGE are present at elevated levels in plasma and atherosclerotic lesions from people with diabetes, and previous in vitro studies have postulated that the presence of these materials is deleterious to cell function. This accumulation of AGE and glycated proteins within cells may arise from either increased formation and/or ineffective removal by cellular proteolytic systems, such as the proteasomes, the major multi-enzyme complex that removes proteins within cells. In this study it is shown that whilst high glucose concentrations fail to modify proteasome enzyme activities in J774A.1 macrophage-like cell extracts, reactive aldehydes enhanced proteasomal enzyme activities. In contrast BSA, pre-treated with high glucose for 8 weeks, inhibited both the chymotrypsin-like and caspase-like activities. BSA glycated using methylglyoxal or glycolaldehyde, also inhibited proteasomal activity though to differing extents. This suppression of proteasome activity by glycated proteins may result in further intracellular accumulation of glycated proteins with subsequent deleterious effects on cellular function.  相似文献   

8.
Proteasomes are the primary sites for protein degradation in mammalian cells. Each proteasome particle contains two chymotrypsin-like, two trypsin-like, and two caspase-like proteolytic sites. Previous studies suggest a complex network of allosteric interactions between these catalytic and multiple regulatory sites. We used positional scanning combinatorial substrate libraries to determine the extended substrate specificity of the caspase-like sites. Based on this analysis, several new substrates were synthesized, the use of which confirmed earlier observations that caspase-like sites (often termed postglutamyl peptide hydrolase) cleave after aspartates better than after glutamates. Highly selective inhibitors of the caspase-like sites were also generated. They stimulated trypsin-like activity of yeast 20 S proteasomes up to 3-fold but not when binding of the inhibitor to the caspase-like sites was prevented in a mutant carrying an uncleaved propeptide. Although substrates of the caspase-like sites allosterically inhibit the chymotrypsin-like activity, inhibitors of the caspase-like sites do not affect the chymotrypsin-like sites. Furthermore, when caspase-like sites were occupied by the uncleaved propeptide or inhibitor, their substrates still inhibited the chymotrypsin-like activity. Thus, occupancy of the caspase-like sites stimulates the trypsin-like activity of proteasomes, but substrates of the caspase-like sites inhibit the chymotrypsin-like activity by binding to a distinct noncatalytic site.  相似文献   

9.
The impaired ubiquitin-proteasome activity is believed to be one of the leading factors that contribute to Parkinson disease pathogenesis partially by causing alpha-synuclein aggregation. However, the relationship between alpha-synuclein aggregation and the impaired proteasome activity is yet unclear. In this study, we examined the effects of three soluble alpha-synuclein species (monomer, dimer, and protofibrils) on the degradation activity of the 26 S proteasome by reconstitution of proteasomal degradation using highly purified 26 S proteasomes and model substrates. We found that none of the three soluble alpha-synuclein species impaired the three distinct peptidase activities of the 26 S proteasome when using fluorogenic peptides as substrates. In striking contrast, alpha-synuclein protofibrils, but not monomer and dimer, markedly inhibited the ubiquitin-independent proteasomal degradation of unstructured proteins and ubiquitin-dependent degradation of folded proteins when present at 5-fold molar excess to the 26 S proteasome. Together these results indicate that alpha-synuclein protofibrils have a pronounced inhibitory effect on 26 S proteasome-mediated protein degradation. Because alpha-synuclein is a substrate of the proteasome, impaired proteasomal activity could further cause alpha-synuclein accumulation/aggregation, thus creating a vicious cycle and leading to Parkinson disease pathogenesis. Furthermore we found that alpha-synuclein protofibrils bound both the 26 S proteasome and substrates of the 26 S proteasome. Accordingly we propose that the inhibitory effect of alpha-synuclein protofibrils on 26 S proteasomal degradation might result from impairing substrate translocation by binding the proteasome or sequestrating proteasomal substrates by binding the substrates.  相似文献   

10.
Imatinib (IM) has been described to modulate the function of dendritic cells and T lymphocytes and to affect the expression of antigen in CML cells. In our study, we investigated the effect of the tyrosine kinase inhibitors IM and nilotinib (NI) on antigen presentation and processing by analyzing the proteasomal activity in CML cell lines and patient samples. We used a biotinylated active site-directed probe, which covalently binds to the proteasomally active beta-subunits in an activity-dependent fashion. Additionally, we analyzed the cleavage and processing of HLA-A3/11- and HLA-B8-binding peptides derived from BCR-ABL by IM- or NI-treated isolated 20S immunoproteasomes using mass spectrometry. We found that IM treatment leads to a reduction in MHC-class I expression which is in line with the inhibition of proteasomal activity. This process is independent of BCR-ABL or apoptosis induction. In vitro digestion experiments using purified proteasomes showed that generation of epitope-precursor peptides was significantly altered in the presence of NI and IM. Treatment of the immunoproteasome with these compounds resulted in an almost complete reduction in the generation of long precursor peptides for the HLA-A3/A11 and ?B8 epitopes while processing of the short peptide sequences increased. Treatment of isolated 20S proteasomes with serine-/threonine- and tyrosine-specific phosphatases induced a significant downregulation of the proteasomal activity further indicating that phosphorylation of the proteasome regulates its function and antigen processing. Our results demonstrate that IM and NI can affect the immunogenicity of malignant cells by modulating proteasomal degradation and the repertoire of processed T cell epitopes.  相似文献   

11.
What happened to plant caspases?   总被引:3,自引:0,他引:3  
The extent of conservation in the programmed cell death pathways that are activated in species belonging to different kingdoms is not clear. Caspases are key components of animal apoptosis; caspase activities are detected in both animal and plant cells. Yet, while animals have caspase genes, plants do not have orthologous sequences in their genomes. It is 10 years since the first caspase activity was reported in plants, and there are now at least eight caspase activities that have been measured in plant extracts using caspase substrates. Various caspase inhibitors can block many forms of plant programmed cell death, suggesting that caspase-like activities are required for completion of the process. Since plant metacaspases do not have caspase activities, a major challenge is to identify the plant proteases that are responsible for the caspase-like activities and to understand how they relate, if at all, to animal caspases. The protease vacuolar processing enzyme, a legumain, is responsible for the cleavage of caspase-1 synthetic substrate in plant extracts. Saspase, a serine protease, cleaves caspase-8 and some caspase-6 synthetic substrates. Possible scenarios that could explain why plants have caspase activities without caspases are discussed.  相似文献   

12.
Due to their tremendous apoptosis-inducing potential, proteasomal inhibitors (PIs) have recently entered clinical trials. Here we show, however, that various PIs rescued proliferating tumor cells from death receptor-induced apoptosis. This protection correlated with the stabilization of X-linked IAP (XIAP) and c-FLIP and the inhibition of caspase activation. Together with the observation that PIs could not protect cells expressing XIAP or c-FLIP short interfering RNAs (siRNAs) from death receptor-induced apoptosis, our results demonstrate that PIs mediate their protective effect via the stabilization of these antiapoptotic proteins. Furthermore, we show that once these proteins were eliminated, either by long-term treatment with death receptor ligands or by siRNA-mediated suppression, active caspases accumulated to an even larger extent in the presence of PIs. Together, our data support a biphasic role for the proteasome in apoptosis, as they show that its constitutive activity is crucial for the rapid initiation of the death program by eliminating antiapoptotic proteins, whereas at later stages, the proteasome acts in an antiapoptotic manner due to the proteolysis of caspases. Thus, for a successful PI-based tumor therapy, it is crucial to carefully evaluate basal proteasomal activity and the status of antiapoptotic proteins, as their PI-mediated prolonged stability might even cause adverse effects, leading to the survival of a tumor.  相似文献   

13.
The effect of uremia on renal cortex cytoplasmic proteasomes was examined by comparing proteasomes isolated from 5/6th nephrectomy rats 3-months post-surgery and age-matched control rats with normal renal function. ATP-dependent proteasome activity was reduced 50% in chronic renal failure rats (CRF) 3-months post-surgery compared to age-matched control rats. Trypsin-like (T-like) proteasome activity was decreased 90% compared to 70% for caspase-like activity (PGPHase) and 30% for chymotrypsin-like activity (C-like). ATP-independent proteasome activity was decreased 60% in CRF rats 3-months post-surgery. ATP-independent renal cortex proteasome T-like activity in CRF rats was 4% of age-matched control rats. C-like and PGPHase activities were 60% and 50% of age-matched controls, respectively. Uremia was associated with decreased 26S proteasome beta subunits. CRF rat 26S proteasomes had decreased levels of beta1, beta3, alpha4, and alpha7 abundances. Compared to age-matched control rats with normal renal function, CRF rats had a 25% increase in ubiquitinated cytoplasmic proteins. Decreased renal cytoplasmic proteasome activity may play a role in renal tubule hypertrophy common to renal diseases associated with decreased functioning nephrons.  相似文献   

14.
In eukaryotes, the 20S proteasome contains two chymotrypsin-like, two trypsin-like, and two active sites shown here to have caspase-like specificity. We report that certain sites allosterically regulate each other's activities. Substrates of a chymotrypsin-like site stimulate dramatically the caspase-like activity and also activate the other chymotrypsin-like site. Moreover, substrates of the caspase-like sites inhibit allosterically the chymotrypsin-like activity (the rate-limiting one in protein breakdown) and thus can reduce the degradation of proteins by 26S proteasomes. These allosteric effects suggest an ordered, cyclical mechanism for protein degradation. We propose that the chymotrypsin-like site initially cleaves ("bites") the polypeptide, thereby stimulating the caspase-like sites. Their activation accelerates further cleavage ("chewing") of the fragments, while the chymotrypsin-like activity is temporarily inhibited. When further caspase-like cleavages are impossible, the chymotryptic site is reactivated and the cycle repeated.  相似文献   

15.
Death by proteases in plants: whodunit   总被引:6,自引:0,他引:6  
Several studies have shown that protease inhibitors can suppress programmed cell death in various plant species and plant tissues. This is especially true of caspase inhibitors that can block programmed cell death and its marker DNA laddering. There are up to six different caspase-like activities that can be measured in plant extracts, the most prominent being caspase1-like and caspase3-like. These activities can be located in vacuoles and also in the nucleus or the cytoplasm. This represents a striking apparent similarity with animal programmed cell death. Because there are no caspase orthologue in plant genomes, a major challenge is to identify these proteases. Recently two proteases with caspase-like activities have been recognized as belonging to two different protease families that are not closely related to animal caspases. Various other protease families have been implicated and this suggests that complex protease networks have been recruited for the plant cell demise.  相似文献   

16.
Proteasomes degrade most proteins in mammalian cells and are established targets of anti-cancer drugs. The majority of proteasome inhibitors are composed of short peptides with an electrophilic functionality (pharmacophore) at the C terminus. All eukaryotic proteasomes have three types of active sites as follows: chymotrypsin-like, trypsin-like, and caspase-like. It is widely believed that active site specificity of inhibitors is determined primarily by the peptide sequence and not the pharmacophore. Here, we report that active site specificity of inhibitors can also be tuned by the chemical nature of the pharmacophore. Specifically, replacement of the epoxyketone by vinyl sulfone moieties further improves the selectivity of β5-specific inhibitors NC-005, YU-101, and PR-171 (carfilzomib). This increase in specificity is likely the basis of the decreased cytotoxicity of vinyl sulfone-based inhibitors to HeLa cells as compared with that of epoxyketone-based inhibitors.  相似文献   

17.
In experimental alcoholic liver disease, protein degradation by the ATP-ubiquitin-proteasome pathway is inhibited. Failure of the proteasome to eliminate cytoplasmic proteins leads to the accumulation of oxidized and otherwise modified proteins. One possible explanation for the inhibition of the proteasome is hyperphosphorylation of proteasome subunits. To examine this possibility, the 26S proteasomes from the liver of rats fed ethanol and a pair-fed control were studied by isolating the proteasomes in a purified fraction. The effect of ethanol on the phosphorylation of proteasomal subunits was compared with the hyperphosphorylation of the proteasomes caused by okadaic acid given to rats in vivo. Ethanol ingestion caused an inhibition of the chymotrypsin-like activity of the purified proteasome. The 2D electrophoresis and Western blot analysis of the purified 20S and 26S proteasomes from the ethanol-fed rats indicated that hyperphosphorylation of proteasomal subunits had occured. The proteasomal alpha type subunits C9/alpha3 and C8/alpha7 were hyperphosphorylated compared to the controls. Chymotrypsin-like activity was also inhibited by okadaic acid treatment similar to ethanol feeding. The 26S proteasome fraction examined by isoelectric focusing gel revealed many hyperphosphorylated bands in the proteasomes from the okadaic acid treated and the ethanol fed rat livers compared with the controls. In conclusion hyperphosphorylation of the proteasome subunits occurs in the ethanol treated proteasomal subunits which could be one mechanism of the inhibition of the 26S proteasome caused by ethanol feeding.  相似文献   

18.
Carbonylated (oxidized) proteins are known to accumulate in the cerebral white matter (WM) and gray matter (GM) of patients with multiple sclerosis (MS). Although oxidative stress is necessary for carbonyl generation, it is the failure of the degradation systems that ultimately leads to the build-up of carbonylated proteins within tissues. In this study, we measured the activity of the 20S proteasome and other proteolytic systems in the cerebral WM and GM of 13 MS patients and 13 controls. We report that the activities of the three peptidases of the 20S proteasome (i.e. chymotrypsin-like, caspase-like and trypsin-like) in both MS-WM and MS-GM are greatly reduced. Interestingly, neither the amount of proteasome nor the levels of the catalytic subunits (β1, β2, and β5) are diminished in this disease. Proteins containing Lys-48 poly-ubiquitin also accumulate in MS tissues, indicating failure of the 26S proteasome as well. Levels of the regulatory caps 11S α and 19S are also lower in MS than in controls, suggesting that the activity of the more complex proteasomes may be reduced further. Finally, the activities of other proteases that might also remove oxidized proteins (calpain, cathepsin B, mitochondrial LonP) are not lessened in MS. Together, these studies suggest that direct inactivation of proteolytic centers in the 20S particle and/or the presence of specific inhibitors is the underlying cause of proteasomal dysfunction in MS.  相似文献   

19.
Activation of aspartate-specific cysteine proteases (caspases) plays a crucial role in programmed cell death (PCD) in animals. Although to date caspases have not been identified in plants, caspase-like activity was described in tobacco during a hypersensitive response to pathogens and in Arabidopsis and tomato cell cultures during chemical-induced PCD. Caspase-like activity was also detected in the course of plant development during petal senescence and endosperm PCD. It is shown here that caspase-like proteases play a crucial role in the developmental cell death of secondary shoots of pea seedlings that emerge after removal of the epicotyl. Caspase-like activity was induced in senescing secondary shoots, but not in dominant growing shoots, in contrast to the papain-like cysteine protease activity that was stronger in the dominant shoot. Revitalization of the senescing shoot by cutting of the dominant shoot reduced the caspase-like activity. Injection of caspase or cysteine protease inhibitors into the remaining epicotyl tissue suppressed the death of the secondary shoots, producing seedlings with two equal shoots. These results suggest that shoot selection in pea seedlings is controlled by PCD, through the activation of caspase-like proteases.  相似文献   

20.
It is well established that nitric oxide (NO) inhibits vascular smooth muscle cell (VSMC) proliferation by modulating cell cycle proteins. The 26S proteasome is integral to protein degradation and tightly regulates cell cycle proteins. Therefore, we hypothesized that NO directly inhibits the activity of the 26S proteasome. The three enzymatic activities (chymotrypsin-like, trypsin-like and caspase-like) of the 26S proteasome were examined in VSMC. At baseline, caspase-like activity was approximately 3.5-fold greater than chymotrypsin- and trypsin-like activities. The NO donor S-nitroso-N-acetylpenicillamine (SNAP) significantly inhibited all three catalytically active sites in a time- and concentration-dependent manner (P < 0.05). Caspase-like activity was inhibited to a greater degree (77.2% P < 0.05). cGMP and cAMP analogs and inhibitors had no statistically significant effect on basal or NO-mediated inhibition of proteasome activity. Dithiothreitol, a reducing agent, prevented and reversed the NO-mediated inhibition of the 26S proteasome. Nitroso-cysteine analysis following S-nitrosoglutathione exposure revealed that the 20S catalytic core of the 26S proteasome contains 10 cysteines which were S-nitrosylated by NO. Evaluation of 26S proteasome subunit protein expression revealed differential regulation of the α and β subunits in VSMC following exposure to NO. Finally, immunohistochemical analysis of subunit expression revealed distinct intracellular localization of the 26S proteasomal subunits at baseline and confirmed upregulation of distinct subunits following NO exposure. In conclusion, NO reversibly inhibits the catalytic activity of the 26S proteasome through S-nitrosylation and differentially regulates proteasomal subunit expression. This may be one mechanism by which NO exerts its effects on the cell cycle and inhibits cellular proliferation in the vasculature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号