首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nigericin and monensin, ionophores for Na+ and K+, have been found to enhance the cytotoxicities of abrin, ricin, and Pseudomonas aeruginosa exotoxin A in Chinese hamster ovary (CHO) cells. They do not affect the cytotoxicity of diphtheria toxin in the same cell line. Maximal sensitization of the CHO cells toward ricin and Pseudomonas toxin requires preculture of CHO cells in the presence of nigericin. Inhibition of protein synthesis in CHO cells by ricin or Pseudomonas toxin is also enhanced by preculture of CHO cells in the presence of nigericin. These results suggest a common step in the intoxication process of ricin and Pseudomonas toxin, the rate of which is facilitated by pretreatment with nigericin. This step is, however, not shared by the intoxication of CHO cells with diphtheria toxin.  相似文献   

2.
The cytotoxicity of intact cinnamomin (a type II ribosome-inactivating protein, RIP) and the RNA N-glycosidase activity of cinnamomin A-chain have been studied and compared with those of ricin. Cinnamomin A-chain exhibits a similar RNA N-glycosidase activity in inhibiting in vitro protein synthesis compared with that of ricin, whereas the cytotoxicity to BA/F3beta cells of intact cinnamomin is markedly lower than intact ricin. In order to demonstrate that it is the B-chains of the two RIPs that bear the difference in cytotoxicity, two hybrid RIPs are prepared from the purified A-/B-chains of cinnamomin and ricin by the disulfide exchange reaction. It has been found that hybrid RIP constructed from cinnamomin A-chain and ricin B-chain is more toxic to BA/F3beta cells than the native cinnamomin, and equivalent to the native ricin. However, the cytotoxicity to BA/F3beta cells of the hybrid RIP constructed from the ricin A-chain and cinnamomin B-chain is lower than ricin, equivalent to the native cinnamomin. Furthermore, the bound amounts of two B-chains on the cell surface are determined by the method of direct cellular ELISA and Scatchard analysis of the binding of the two B-chains indicates that cinnamomin and ricin share similar binding sites with different affinity.  相似文献   

3.
4.
Several protein toxins, such as the potent plant toxin ricin, enter mammalian cells by endocytosis and undergo retrograde transport via the Golgi complex to reach the endoplasmic reticulum (ER). In this compartment the catalytic moieties exploit the ER-associated degradation (ERAD) pathway to reach their cytosolic targets. Bacterial toxins such as cholera toxin or Pseudomonas exotoxin A carry KDEL or KDEL-like C-terminal tetrapeptides for efficient delivery to the ER. Chimeric toxins containing monomeric plant ribosome-inactivating proteins linked to various targeting moieties are highly cytotoxic, but it remains unclear how these molecules travel within the target cell to reach cytosolic ribosomes. We investigated the intracellular pathways of saporin, a monomeric plant ribosome-inactivating protein that can enter cells by receptor-mediated endocytosis. Saporin toxicity was not affected by treatment with Brefeldin A or chloroquine, indicating that this toxin follows a Golgi-independent pathway to the cytosol and does not require a low pH for membrane translocation. In intoxicated Vero or HeLa cells, ricin but not saporin could be clearly visualized in the Golgi complex using immunofluorescence. The saporin signal was not evident in the Golgi, but was found to partially overlap with that of a late endosome/lysosome marker. Consistently, the toxicities of saporin or saporin-based targeted chimeric polypeptides were not enhanced by the addition of ER retrieval sequences. Thus, the intracellular movement of saporin differs from that followed by ricin and other protein toxins that rely on Golgi-mediated retrograde transport to reach their retrotranslocation site.  相似文献   

5.
The rRNA N-glycosidase activities of the catalytically active A chains of the heterodimeric ribosome inactivating proteins (RIPs) ricin and abrin, the single-chain RIPs dianthin 30, dianthin 32, and the leaf and seed forms of pokeweed antiviral protein (PAP) were assayed on E. coli ribosomes. All of the single-chain RIPs were active on E. coli ribosomes as judged by the release of a 243 nucleotide fragment from the 3′ end of 23S rRNA following aniline treatment of the RNA. In contrast, E. coli ribosomes were refractory to the A chains of ricin and abrin. The position of the modification of 23S rRNA by dianthin 32 was determined by primer extension and found to be A2660, which lies in a sequence that is highly conserved in all species.  相似文献   

6.
Immunotoxins are presently being evaluated as novel agents for cancer therapy. The direct mechanism by which immunotoxins kill cancer cells is inhibition of protein synthesis, but cytotoxicity due to induction of apoptosis has also been observed with these agents. Some cancers that express high levels of BCL-2 are relatively resistant to apoptosis inducing agents. It is therefore important to determine to what degree the toxicity of ricin, diphtheria toxin, Pseudomonas exotoxin and Pseudomonas exotoxin derived immunotoxins towards cancer cells can be attributed to inhibition of protein synthesis, and to what degree to subsequent induction of apoptosis. We compared the sensitivity of MCF-7 breast cancer cells that were stably transfected with a BCL-2 expression plasmid and thus protected against apoptosis and of MCF-7 cells transfected with a control plasmid towards ricin, diphtheria and Pseudomonas toxin, a Pseudomonas toxin-derived immunotoxin (LMB-7) and tumour necrosis factor (TNF). We found that BCL-2 mediated inhibition of apoptosis renders the cells almost completely resistant (1000-fold) to tumour necrosis factor, but the same cells were only 3–10 fold more resistant to cytotoxicity induced by immunotoxin LMB-7 as well as Pseudo-monas exotoxin, diphtheria toxin and ricin. We next studied several leukaemia cell lines with variable levels of BCL-2 expression and found them quite sensitive to a Pseudomonas exotoxin containing immunotoxin independent of the level of BCL-2. Our data indicate that although BCL-2 overexpression can have a modest effect on sensitivity to an immunotoxin, cell lines derived from patients are still very sensitive to immunotoxins.  相似文献   

7.
Synthetic biotinylated RNA substrates were cleaved by the combined actions of ricin holotoxin and a chemical agent, N,N'-dimethylethylenediamine. The annealing of the product with a ruthenylated oligodeoxynucleotide resulted in the capture of ruthenium chelate onto magnetic beads, enabling the electrochemiluminescence (ECL)-based detection of RNA N-glycosidase activities of toxins. ECL immunoassays and the activity assay exhibited similar limits of detection just below signals with 0.1 ng/ml of ricin; the ECL response was linear as the ricin concentration increased by two orders of magnitude. Activities were detected with other adenine-specific RNA N-glycosidases, including Ricinus communis agglutinin (RCA), saporin, and abrin II. The substrate that provided the greatest sensitivity was composed of a four-residue loop, GdAGA, in a hairpin structure. When the 2'-deoxyadenosine (dA) was substituted with adenosine (A), 2'-deoxyinosine, or 2'-deoxyuridine, toxin-dependent signals were abolished. Placing the GdAGA motif in a six-residue loop or replacing it with GdAdGA or GdAAA resulted in measurable activities and signal patterns that were reproducible for a given toxin. Data indicated that saporin and abrin II shared one pattern, while ricin and RCA shared a distinct pattern. A monoclonal antibody that enhanced the activities of ricin, RCA, and abrin II to different extents, thus improving the diagnostic potential of the assay, was identified .  相似文献   

8.
The rRNA N-glycosidase activities of the catalytically active A chains of the heterodimeric ribosome inactivating proteins (RIPs) ricin and abrin, the single-chain RIPs dianthin 30, dianthin 32, and the leaf and seed forms of pokeweed antiviral protein (PAP) were assayed on E. coli ribosomes. All of the single-chain RIPs were active on E. coli ribosomes as judged by the release of a 243 nucleotide fragment from the 3′ end of 23S rRNA following aniline treatment of the RNA. In contrast, E. coli ribosomes were refractory to the A chains of ricin and abrin. The position of the modification of 23S rRNA by dianthin 32 was determined by primer extension and found to be A2660, which lies in a sequence that is highly conserved in all species.  相似文献   

9.
Temporal separation of protein toxin translocation from processing events   总被引:4,自引:0,他引:4  
Intoxication of Vero cells by ricin, modeccin, diphtheria toxin (DT), and Pseudomonas exotoxin A requires: 1) binding to cell surface receptors; 2) transport to the cytoplasm; and 3) enzymatic inactivation of a component of the protein synthetic machinery. The kinetic profiles of all four toxins consist of a lag followed by the apparent first-order decrease in protein synthesis. Autoradiographic analysis of DT-intoxicated cell populations has demonstrated that two subpopulations of cells exist during the period of decreasing protein synthesis: one population synthesizing at control levels and the other synthesizing little or no protein (Hudson, T. H., and Neville, D. M., Jr. (1985) J. Biol. Chem. 260, 2675-2680). The present study correlates the autoradiographic data with the rates of protein synthesis decline in cells intoxicated with modeccin, ricin, Pseudomonas exotoxin A, as well DT. In all cases, the first time point which exhibits a decrease in protein synthetic activity also exhibits two subpopulations of cells, one synthesizing protein at control rates and the other synthesizing little or no protein. As the intoxication progresses, cells leave the control population by the rapid cessation of all protein synthesis. These experiments demonstrate that transport of all four toxins to the cytosol is the rate-limiting step during the pseudo first-order decline in protein synthesis. Furthermore, the final step in the transport process (translocation) must result in the release to the cytoplasm of a quantity of toxin sufficient to rapidly inactivate all protein synthesis in that cell. The probability of a translocation event occurring in any cell of the population is established during the lag and remains constant throughout the first-order decrease in protein synthesis. The requirement for acidification during the intoxication by DT, Pseudomonas exotoxin A, or modeccin is restricted to the lag period. Acidification is therefore necessary to establish the probability of translocation, but it is not directly involved in the actual translocation of these toxins. The pseudo first-order passage of DT intoxications through antitoxin and NH4Cl- or monensin-sensitive stages are shown to have the same cellular basis as the pseudo first-order decrease in protein synthesis. A kinetic model is presented which defines the DT intoxication process from one of its earliest events (endocytosis) to its penultimate event (translocation of toxin to the cytosol).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
We have studied the cytotoxicity of ricin in cells treated with brefeldin A (BFA), which dramatically disrupts the structure of the Golgi apparatus causing Golgi content and membrane to redistribute to the ER. BFA inhibits the cytotoxicity of ricin in Chinese hamster ovary, normal rat kidney, and Vero cells and abolishes the enhancement of ricin cytotoxicity by NH4Cl, nigericin, swainsonine, and tunicamycin or by a mutation in endosomal acidification. BFA protects cells from the cytotoxicities of modeccin and Pseudomonas toxin, but has no effect on the intoxication by diphtheria toxin. Pretreatment of BFA does not protect cells from ricin treatment in the absence of BFA. Our results suggest that ricin, modeccin, and Pseudomonas toxin share a common pathway of intracellular transport from endosomes to the Golgi region where they are released into the cytosol. In contrast, the lack of protection of Vero cells from diphtheria toxin by BFA indicates that diphtheria toxin is released from acidified endosomes without involving the Golgi region.  相似文献   

11.
Saporin is a type I ribosome-inactivating protein that is often appended with a cell-binding domain to specifically target and kill cancer cells. Urokinase plasminogen activator (uPA)-saporin, for example, is an anticancer toxin that consists of a chemical conjugate between the human uPA and native saporin. Both saporin and uPA-saporin enter the target cell by endocytosis and must then escape the endomembrane system to reach the cytosolic ribosomes. The latter process may represent a rate-limiting step for intoxication and would therefore directly affect toxin potency. In the present study, we document two treatments (shock with dimethylsulfoxide and lipopolyamine coadministration) that generate substantial cellular sensitization to saporin/uPA-saporin. With the use of lysosome-endosome X (LEX)1 and LEX2 mutant cell lines, an endosomal trafficking step preceding cargo delivery to the late endosomes was identified as a major site for the dimethylsulfoxide-facilitated entry of saporin into the cytosol. Dimethylsulfoxide and lipopolyamines are known to disrupt the integrity of endosome membranes, so these reagents could facilitate the rapid movement of toxin from permeabilized endosomes to the cytosol. However, the same pattern of toxin sensitization was not observed for dimethylsulfoxide- or lipopolyamine-treated cells exposed to diphtheria toxin, ricin, or the catalytic A chain of ricin. The sensitization effects were thus specific for saporin, suggesting a novel mechanism of saporin translocation by endosome disruption. Lipopolyamines have been developed as in vivo gene therapy vectors; thus, lipopolyamine coadministration with uPA-saporin or other saporin conjugates could represent a new approach for anticancer toxin treatments.  相似文献   

12.
13.
Park SW  Stevens NM  Vivanco JM 《Planta》2002,216(2):227-234
Ribosome-inactivating proteins (RIPs) are enzymes that cleave a specific adenine base from the highly conserved sarcin/ricin (S/R) loop of the large ribosomal RNA, thus arresting protein synthesis at the translocation step. In the present study, we employed three RIPs to dissect the antifungal activity of RIPs as plant defense proteins. We measured the catalytic activity of RAT (the catalytic A-chain of ricin from Ricinus communis L.), saporin-S6 (from Saponaria officinalis L.), and ME (RIP from Mirabilis expansa R&P) against intact ribosomal substrates isolated from various pathogenic fungi. We further determined the enzymatic specificity of these three RIPs against fungal ribosomes, from Rhizoctonia solani Kuhn, Alternaria solani Sorauer, Trichoderma reesei Simmons and Candida albicans Berkhout, and correlated the data with antifungal activity. RAT showed the strongest toxicity against all tested fungal ribosomes, except for the ribosomes isolated from C. albicans, which were most susceptible to saporin. RAT and saporin showed higher enzymatic activity than ME against ribosomes from all of the fungal species assayed, but did not show detectable antifungal activity. In contrast, ME showed substantial inhibitory activity against fungal growth. Using N-hydroxysuccinimide-fluorescein labeling of RIPs and fluorescence microscopy, we determined that ME was targeted to the surface of fungal cells and transferred into the cells. Thus, ME caused ribosome depurination and subsequent fungal mortality. In contrast, saporin did not interact with fungal cells, correlating with its lack of antifungal activity.  相似文献   

14.
Ribosome-inactivating protein (RIP)-containing immunotoxins are currently used in clinical trials as anti-tumour drugs, in particular against haematological malignancies. In cell killing-based therapies it is important to identify the death pathways induced by the cytotoxic agent. The purpose of this work was to compare the pathways of cell death induced by the RIP saporin with those carried out by ricin in the L540 human Hodgkin's lymphoma-derived cell line. Protein synthesis inhibition, activation of caspases, DNA fragmentation and loss of viability have been evaluated. The two toxins triggered a similar DNA fragmentation and cell death, at concentrations giving the same level of cell protein synthesis inhibition, although the inhibitory effect of ricin on protein synthesis was more rapid than that of saporin. Moreover, the intrinsic apoptotic pathway was equally activated by both toxins, whilst ricin activated the extrinsic caspase pathway and the effector caspase-3/7 more efficiently than saporin. The complete inhibition of caspases by Z-VAD was only partially effective in cell rescue which appeared to be time limited. Necrostatin-1, a new inhibitor of non-apoptotic death, rescued cells from death by RIPs, although the effect was also partial and temporary. Despite the high RIP doses used no necrosis was detectable by Annexin V/Propidium Iodide (PI) test. These results suggest that more than one death mechanism was elicited by both ricin and saporin, however, with different timing and strength. The perspective of modulating cell death of neoplastic lymphocytes through different pathways could add new opportunities to reduce side effects and develop combined synergic immuno-chemotherapy.  相似文献   

15.
Monensin, a carboxylic ionophore was intercalated in liposomes (liposomal monensin) and its effect on cytotoxicities of ricin, Pseudomonas exotoxin A and diphtheria toxin in CHO cells was studied. Intercalation of monensin in liposomal bilayer is found to have no effect on its stability and interaction with cells. Liposomal monensin (1 nM) substantially enhance the cytotoxicities of ricin (62-fold) and Pseudomonas exotoxin A (11.5-fold) while it has no effect on diphtheria toxin. This observed effect is highly dependent on the liposomal lipid composition. The potentiating ability of monensin (1 nM) in neutral vesicles is significantly higher (2.2-fold) as compared to negatively charges vesicles. This ability is drastically reduced by incorporation of stearylamine in liposomes and is found to be dependent on the density of stearylamine as well as on the concentration of serum in the medium. Monensin in liposomes containing 24 mol% stearylamine has a very marginal effect on the cytotoxicity of ricin (7.5-fold) which is further reduced (1.5-fold) in the presence of 20% serum. The uptake of 125I-gelonin from neutral vesicles is significantly higher (approximately 2.0-fold) than that from the negative vesicles. The uptake from positive vesicles is highly dependent on the concentration of stearylamine. The reduction in the lag period (30 min) of ricin action by monensin in neutral and negative vesicle is comparable with free monensin. However, monensin in positive vesicle has no effect on it. These studies have suggested that liposomes could be used as a delivery vehicle for monensin for selective elimination of tumor cells in combination with hybrid toxins.  相似文献   

16.
Depletion of intracellular K+ has been reported to result in an arrest of the formation of coated pits in human fibroblasts (Larkin, J.M., M.S. Brown, J.L. Goldstein, and R.G.W. Anderson, 1983, Cell, 33:273-285). We have studied the effects of K+ depletion on the cytotoxicities of ricin, Pseudomonas exotoxin A, and diphtheria toxin in Chinese hamster ovary (CHO) cells. The cytotoxicities of ricin and Pseudomonas toxin were enhanced in K+-depleted CHO cells whereas the cytotoxicity of diphtheria toxin was reduced by K+ depletion. The effects of NH4Cl on the cytotoxicities of ricin, Pseudomonas toxin, and diphtheria toxin were found to be similar to those of K+ depletion, and there were no additive or synergistic effects on ricin cytotoxicity by NH4Cl in K+-depleted medium. The enhancement of ricin cytotoxicity by K+ depletion could be completely reversed by the addition of K+, Rb+, and partially by the addition of Cs+, before the ricin treatment, whereas Li+ was ineffective. These protective effects of K+ or Rb+ requires a functional Na+/K+ ATPase. CHO cells grown in K+-depleted media were found to contain 6.3-fold increase in intracellular Na+ level, concomitant with a 10-fold reduction in intracellular K+ level. The enhanced cytotoxicity of ricin in K+-free medium and the increased uptake of Na+ could be abolished by amiloride or amiloride analogues, which are known to be potent inhibitors of the Na+/H+ antiport system. Our results suggest that a depletion of intracellular K+ results in an influx of Na+, which is accompanied by the extrusion of H+. Consequently, there is an alkalinization of the cytosol and the ricin-containing endosomes. As a result, ricin is more efficiently released from the endosomes in-K+-depleted cells. Results from the studies of the binding, internalization, and degradation of 125I-ricin, and the kinetics of inhibition of protein synthesis by ricin in K+-depleted cells are consistent with this working hypothesis.  相似文献   

17.
The glycoproteins ricin and abrin intoxicate cells by inhibiting protein synthesis. Pretreatment of HeLa cells with cholera toxin partially protects them from ricin and abrin activity. The involvement in this phenomenon of the various effects of cholera toxin, namely, redistribution of membrane receptors elicited from protomer B and increasing cyclic AMP concentrations induced by protomer A, were studied. Substances able to enhance cyclic AMP concentrations do not affect ricin and abrin activity, while protomer B alone protects cells. In addition, the effects of several lectins on ricin or abrin toxicity were examined. Almost complete prevention of ricin or abrin activity was obtained using concanavalin A (Con A) and wheat germ agglutinin (WGA). Conversely, neither succinyl Con A nor Ulex europeus agglutinin (UEA) affected the cellular response. Both protomer B of cholera toxin and Con A did not alter the binding of ricin or abrin; they seem to protect cells by altering membrane structure.  相似文献   

18.
以F3GA(Cibacron Blue F3GA)为配基建立了一种可用于免疫毒素(IT)分离纯化的亲和层析方法。实验中用三种不同来源的核糖体灭活蛋白(RIP),即蓖麻毒素A链(RTA),苦瓜毒素(momordin,MT)和Saporin,以探讨RIP与F3GA的相互作用。分析显示三种RIP均能引起F3GA吸收光诸明显红移,提示RIP均可与F3GA发生特异结合。将F3GA与Sephadex交联可获得Bluedex。Bluedex亲和层析是一种经济有效,简单易行,便于在各类实验室中使用的蛋白质亲和层析技术。结果表明:在低盐溶液中RTA和MT均可迅速地与Bluedex结合,而在高盐溶液中(0.65mol/LNaCl)又极易被洗脱回收。这一技术用于免疫毒素的研究可有效地去除游离抗体,而不影响其杀伤活性。  相似文献   

19.
Single-chain ribosome inactivating proteins (RIPs) are cytotoxic components of macromolecular pharmaceutics for immunotherapy of cancer and other human diseases. Saporin belongs to a family of single-chain RIPs sharing sequence and structure homology. In a preliminary attempt to define an active saporin polypeptide of minimum size we have generated proteins with deletions at the N-terminus and at the C-terminus. An N-terminal (sapDelta1-20) deletion mutant of saporin displayed defective catalytic activity, drastically reduced cytotoxicity but increased ability to interact with liposomes inducing their permeabilization at low pH. A C-terminal (sapDelta239-253) deletion mutant showed instead a moderate reduction in cytotoxic activity. A substantial alteration of secondary structure was evidenced by Fourier transformed infrared spectroscopy (FTIR) in the sapDelta1-20 mutant. It can be hypothesized that the defective functions of sapDelta1-20 are due to alterations of its spatial configuration.  相似文献   

20.
After binding, the protein toxins ricin, abrin, and modeccin are endocytosed and processed through the cell's vesicular system in a poorly understood fashion, prior to translocation to the cytosol. The role of the Golgi apparatus in toxin processing was studied using brefeldin-A (BFA), a fungal metabolite which blocks Golgi function. At concentrations that inhibit secretion of interleukin-2 (IL-2), BFA blocks ricin, modeccin, and abrin intoxication of a lymphocyte derived cell line (Jurkat). Paradoxically, BFA enhances the toxicity of two ricin A-chain immunotoxins targeted against distinct cell surface determinants. BFA concentrations which are optimal for immunotoxin enhancement are below those needed to affect ricin intoxication or IL-2 secretion. BFA blockade of ricin does not involve effects on ricin endocytosis, toxin translocation to the cytosol, or the enzymatic activity of toxin A-chain. In contrast, BFA has no effect on immunotoxin processing but does enhance the immunotoxin translocation step. It is concluded that: 1) intact Golgi function is required for holotoxin processing. 2) Intact Golgi function is not required for holotoxin translocation. 3) Golgi function is tightly linked to immunotoxin translocation. 4) BFA has effects on vesicular routing in addition to the block of Golgi function in secretion which has been reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号