首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The goal of this work is to understand how the sequence of a protein affects the likelihood that it will form an amyloid fibril and the kinetics along the fibrillization pathway. The focus is on very short fragments of amyloid proteins since these play a role in the fibrillization of the parent protein and can form fibrils themselves. Discontinuous molecular dynamics simulations using the PRIME20 force field were performed of the aggregation of 48‐peptide systems containing SNQNNF ( PrP (170–175 )), SSTSAA (RNaseA(15–20)), MVGGVV (Aβ(35–40)), GGVVIA (Aβ(37–42)), and MVGGVVIA (Aβ(35–42)). In our simulations SNQQNF, SSTTSAA, and MVGGVV form large numbers of fibrillar structures spontaneously (as in experiment). GGVVIA forms β‐sheets that do not stack into fibrils (unlike experiment). The combination sequence MVGGVVIA forms less fibrils than MVGGVV, hindered by the presence of the hydrophobic residues at the C‐terminal. Analysis of the simulation kinetics and energetics reveals why MVGGVV forms fibrils and GGVVIA does not, and why adding I and A to MVGGVVIA reduces fibrillization and enhances amorphous aggregation into oligomeric structures. The latter helps explain why Aβ(1–42) assembles into more complex oligomers than Aβ(1–40), a consequence of which is that it is more strongly associated with Alzheimer's disease. Proteins 2014; 82:1469–1483. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
Discovering the mechanisms by which proteins aggregate into fibrils is an essential first step in understanding the molecular level processes underlying neurodegenerative diseases such as Alzheimer’s and Parkinson''s. The goal of this work is to provide insights into the structural changes that characterize the kinetic pathways by which amyloid-β peptides convert from monomers to oligomers to fibrils. By applying discontinuous molecular dynamics simulations to PRIME20, a force field designed to capture the chemical and physical aspects of protein aggregation, we have been able to trace out the entire aggregation process for a system containing 8 Aβ17–42 peptides. We uncovered two fibrillization mechanisms that govern the structural conversion of Aβ17–42 peptides from disordered oligomers into protofilaments. The first mechanism is monomeric conversion templated by a U-shape oligomeric nucleus into U-shape protofilament. The second mechanism involves a long-lived and on-pathway metastable oligomer with S-shape chains, having a C-terminal turn, en route to the final U-shape protofilament. Oligomers with this C-terminal turn have been regarded in recent experiments as a major contributing element to cell toxicity in Alzheimer’s disease. The internal structures of the U-shape protofilaments from our PRIME20/DMD simulation agree well with those from solid state NMR experiments. The approach presented here offers a simple molecular-level framework to describe protein aggregation in general and to visualize the kinetic evolution of a putative toxic element in Alzheimer’s disease in particular.  相似文献   

3.
Wagoner VA  Cheon M  Chang I  Hall CK 《Proteins》2011,79(7):2132-2145
We simulate the aggregation of large systems containing palindromic peptides from the Syrian hamster prion protein SHaPrP 113-120 (AGAAAAGA) and the mouse prion protein MoPrP 111-120 (VAGAAAAGAV) and eight sequence variations: GAAAAAAG, (AG)(4) , A8, GAAAGAAA, A10, V10, GAVAAAAVAG, and VAVAAAAVAV The first two peptides are thought to act as the Velcro that holds the parent prion proteins together in amyloid structures and can form fibrils themselves. Kinetic events along the fibrillization pathway influence the types of structures that occur and variations in the sequence affect aggregation kinetics and fibrillar structure. Discontinuous molecular dynamics simulations using the PRIME20 force field are performed on systems containing 48 peptides starting from a random coil configuration. Depending on the sequence, fibrillar structures form spontaneously over a range of temperatures, below which amorphous aggregates form and above which no aggregation occurs. AGAAAAGA forms well organized fibrillar structures whereas VAGAAAAGAV forms less well organized structures that are partially fibrillar and partially amorphous. The degree of order in the fibrillar structure stems in part from the types of kinetic events leading up to its formation, with AGAAAAGA forming less amorphous structures early in the simulation than VAGAAAAGAV. The ability to form fibrils increases as the chain length and the length of the stretch of hydrophobic residues increase. However as the hydrophobicity of the sequence increases, the ability to form well-ordered structures decreases. Thus, longer hydrophobic sequences form slightly disordered aggregates that are partially fibrillar and partially amorphous. Subtle changes in sequence result in slightly different fibril structures.  相似文献   

4.
A 23-residue peptide termed BH(9-10) was designed based on a beta-hairpin segment of the single-layer beta-sheet region of Borrelia OspA protein. The peptide contains a large number of charged amino acid residues, and it does not follow the amphipathic pattern that is commonly found in natural beta-sheets. In aqueous solution, the peptide was highly soluble and flexible, with a propensity to form a non-native beta-turn. Trifluoroethanol (TFE) stabilized a native-like beta-turn in BH(9-10). TFE also decreased the level of solubility of the peptide, resulting in peptide precipitation. The precipitation process accompanied a conformational conversion to a beta-sheet structure, as judged with circular dichroism spectroscopy. The precipitate was found to be fibrils similar to those associated with human amyloid diseases. The fibrillization kinetics depended on peptide and TFE concentrations, and had a nucleation step followed by an assembly step. The fibrillization was reversible, and the dissociation reaction involved two phases. TFE appears to induce the fibrils by stabilizing a beta-sheet conformation of the peptide that optimally satisfies hydrogen bonding and electrostatic complementarity. This TFE-induced fibrillization is quite unusual, because most amyloidogenic peptides form fibrils in aqueous solution and TFE disrupts these fibrils. Nevertheless, the BH(9-10) fibrils have similar structure to other fibrils, supporting the emerging idea that polypeptides possess an intrinsic ability to form amyloid-like fibrils. The high level of solubility of BH(9-10), the ability to precisely control fibril formation and dissociation, and the high-resolution structure of the same sequence in the beta-hairpin conformation in the OspA protein provide a tractable experimental system for studying the fibril formation mechanism.  相似文献   

5.
Conway KA  Harper JD  Lansbury PT 《Biochemistry》2000,39(10):2552-2563
Two missense mutations in the gene encoding alpha-synuclein have been linked to rare, early-onset forms of Parkinson's disease (PD). These forms of PD, as well as the common idiopathic form, are characterized by the presence of cytoplasmic neuronal deposits, called Lewy bodies, in the affected region of the brain. Lewy bodies contain alpha-synuclein in a form that resembles fibrillar Abeta derived from Alzheimer's disease (AD) amyloid plaques. One of the mutant forms of alpha-synuclein (A53T) fibrillizes more rapidly in vitro than does the wild-type protein, suggesting that a correlation may exist between the rate of in vitro fibrillization and/or oligomerization and the progression of PD, analogous to the relationship between Abeta fibrillization in vitro and familial AD. In this paper, fibrils generated in vitro from alpha-synuclein, wild-type and both mutant forms, are shown to possess very similar features that are characteristic of amyloid fibrils, including a wound and predominantly unbranched morphology (demonstrated by atomic force and electron microscopies), distinctive dye-binding properties (Congo red and thioflavin T), and antiparallel beta-sheet structure (Fourier transform infrared spectroscopy and circular dichroism spectroscopy). alpha-Synuclein fibrils are relatively resistant to proteolysis, a property shared by fibrillar Abeta and the disease-associated fibrillar form of the prion protein. These data suggest that PD, like AD, is a brain amyloid disease that, unlike AD, is characterized by cytoplasmic amyloid (Lewy bodies). In addition to amyloid fibrils, a small oligomeric form of alpha-synuclein, which may be analogous to the Abeta protofibril, was observed prior to the appearance of fibrils. This species or a related one, rather than the fibril itself, may be responsible for neuronal death.  相似文献   

6.
Protein aggregation is associated with fatal neurodegenerative diseases, including Alzheimer's and Parkinson's. Mapping out kinetics along the aggregation pathway could provide valuable insights into the mechanisms that drive oligomerization and fibrillization, but that is beyond the current scope of computational research. Here we trace out the full kinetics of the spontaneous formation of fibrils by 48 Aβ16-22 peptides, following the trajectories in molecular detail from an initial random configuration to a final configuration of twisted protofilaments with cross-β-structure. We accomplish this by performing large-scale molecular-dynamics simulations based on an implicit-solvent, intermediate-resolution protein model, PRIME20. Structural details such as the intersheet distance, perfectly antiparallel β-strands, and interdigitating side chains analogous to a steric zipper interface are explained by and in agreement with experiment. Two characteristic fibrillization mechanisms—nucleation/templated growth and oligomeric merging/structural rearrangement—emerge depending on the temperature.  相似文献   

7.
We have investigated the propensity to form fibrillar aggregates of a variety of fragments and variants of the tau protein under the influence of a tau fibrillization inducer: coenzyme Q(0). To better identify fibrillization hotspots, we compare the polymerization propensity of tau fragments containing the sequence of putative hotspots with that of tau variants with that same sequence deleted. We also investigate the effects of biologically occurring modifications such as phosphorylation and deamidation. We found that residues 305 to 335 are essential for in vitro tau fibrillization. Residues 306 to 311 facilitate in vitro assembly, but are not sufficient to mimic the in vivo fibrillization of tau. Furthermore, the propensity of the 306-311 sequence to form fibrils is highly decreased by chemical modifications of tyrosine 310 that are commonly found in vivo.  相似文献   

8.
The self-assembly of soluble proteins and peptides into β-sheet-rich oligomeric structures and insoluble fibrils is a hallmark of a large number of human diseases known as amyloid diseases. Drugs that are able to interfere with these processes may be able to prevent and/or cure these diseases. Experimental difficulties in the characterization of the intermediates involved in the amyloid formation process have seriously hampered the application of rational drug design approaches to the inhibition of amyloid formation and growth. Recently, short model peptide systems have proved useful in understanding the relationship between amino acid sequence and amyloid formation using both experimental and theoretical approaches. Moreover, short d-peptide sequences have been shown to specifically interfere with those short amyloid stretches in proteins, blocking oligomer formation or disassembling mature fibrils. With the aim of rationalizing which interactions drive the binding of inhibitors to nascent β-sheet oligomers, in this study, we have carried out extensive molecular dynamics simulations of the interaction of selected d-peptide sequences with oligomers of the target model sequence STVIIE. Structural analysis of the simulations helped to identify the molecular determinants of an inhibitory core whose conformational and physicochemical properties are actually shared by nonpeptidic small-molecule inhibitors of amyloidogenesis. Selection of one of these small molecules and experimental validation against our model system proved that it was indeed an effective inhibitor of fibril formation by the STVIIE sequence, supporting theoretical predictions. We propose that the inhibitory determinants derived from this work be used as structural templates in the development of pharmacophore models for the identification of novel nonpeptidic inhibitors of aggregation.  相似文献   

9.
Phase diagrams describing fibrillization by polyalanine peptides   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

10.
We investigate the fibrillization process for amyloid tau fragment peptides (VQIVYK) by applying the discontinuous molecular dynamics method to a system of 48 VQIVYK peptides modeled using a new protein model/force field, PRIME20. The aim of the article is to ascertain which factors are most important in determining whether or not a peptide system forms perfect coherent fibrillar structures. Two different directional criteria are used to determine when a hydrogen bond occurs: the original H‐bond constraints and a parallel preference H‐bond constraint that imparts a slight bias towards the formation of parallel versus antiparallel strands in a β‐sheet. Under the original H‐bond constraints, the resulting fibrillar structures contain a mixture of parallel and antiparallel pairs of strands within each β‐sheet over the whole fibrillization temperature range. Under the parallel preference H‐bond constraints, the β‐sheets within the fibrillar structures are more likely to be parallel and indeed become perfectly parallel, consistent with X‐ray crystallography, at a high temperature slightly below the fibrillization temperature. The high temperature environment encourages the formation of perfect fibril structures by providing enough time and space for peptides to rearrange during the aggregation process. There are two different kinetic mechanisms, template assembly with monomer addition at high temperature and merging/rearrangement without monomer addition at low temperature, which lead to significant differences in the final fibrillar structure. This suggests that the diverse fibril morphologies generally observed in vitro depend more on environmental conditions than has heretofore been appreciated.  相似文献   

11.
It is known that amyloid oligomers, protofibrils, and fibrils induce cell death, and antibiotic tetracycline inhibits the fibrillization of beta amyloid peptides and other amyloidogenic proteins and disassembles their pre-formed fibrils. Earlier we have demonstrated that sarcomeric cytoskeletal proteins of the titin family (X-, C-, and H-proteins) are capable to form in vitro amyloid fibrils, and tetracycline effectively destroys these fibrils. Here we show that the viability of polymorphonuclear leukocytes in the presence of X-protein amyloids depends on the concentration of amyloid fibrils of X-protein and the time of incubation. In addition to the disaggregation of X-protein fibrils, tetracycline eliminated the cytotoxic effect of the protein. The antibiotic itself did not show a toxic effect, and the cell viability in its presence even increased. Our results evidence the potential of this approach for evaluating the effectiveness of drugs preventing or treating amyloidoses.  相似文献   

12.
Karr JW  Szalai VA 《Biochemistry》2008,47(17):5006-5016
Copper has been proposed to play a role in Alzheimer's disease through interactions with the amyoid-beta (Abeta) peptide. The coordination environment of bound copper as a function of Cu:Abeta stoichiometry and Abeta oligomerization state are particularly contentious. Using low-temperature electron paramagnetic resonance (EPR) spectroscopy, we spectroscopically distinguish two Cu(II) binding sites on both soluble and fibrillar Abeta (for site 1, A parallel = 168 +/- 1 G and g parallel = 2.268; for site 2, A parallel = 157 +/- 2 G and g parallel = 2.303). When fibrils that have been incubated with more than 1 equiv of Cu(II) are washed, the second Cu(II) ion is removed, indicating that it is only weakly bound to the fibrils. No change in the Cu(II) coordination environment is detected by EPR spectroscopy of Cu(II) with Abeta (1:1 ratio) collected as a function of Abeta fibrillization time, which indicates that the Cu(II) environment is independent of Abeta oligomeric state. The initial Cu(II)-Abeta complexes go on to form Cu(II)-containing Abeta fibrils. Transmission electron microscopy images of Abeta fibrils before and after Cu(II) addition are the same, showing that once incorporated, Cu(II) does not affect fibrillar structure; however, the presence of Cu(II) appears to induce fibril-fibril association. On the basis of our results, we propose a model for Cu(II) binding to Abeta during fibrillization that is independent of peptide oligomeric state.  相似文献   

13.
The concentration of beta-amyloid peptide (Abeta), x-42 or x-40 amino acids long, increases in brain with the progression Alzheimer's disease (AD). These peptides are deposited extracellularly as highly insoluble fibrils that form densities of amyloid plaques. Abeta fibrillization is a complex polymerization process preceded by the formation of oligomeric and prefibrillar Abeta intermediates. In some of our in vitro studies, in which the kinetics of intermediate steps of fibril formation were examined, we used concentrations of synthetic Abeta that exceed what is normally employed in fibrillization studies, 300-600 microM. At these concentrations, in a cell free system and under physiological conditions, Abeta 1-40 peptide (Abeta40) forms fibrils that spontaneously assemble into clearly defined spheres, "betaamy balls", with diameters of approximately 20-200 microm. These supramolecular structures show weak birefringence with Congo red staining and high stability with prolonged incubation times (at least 2 weeks) at 30 degrees C, freezing, and dilution in H(2)O. At 600 microM, they are detected after incubation for approximately 20 h. Abeta peptide 1-42 (Abeta42) lacks the ability to form betaamy balls but accelerates Abeta40 betaamy ball formation at low stoichiometric levels (1:20 Abeta42:Abeta40 ratio). Abeta42 levels above this (=10-50% w/w) impede Abeta40 betaamy ball formation. Using light (LM) and electron microscopy (EM), this study examines the gross morphology and ultrastructure of Abeta40 betaamy balls and their time course of formation, in the absence and presence of Abeta42, along with some stability measures. As spheres of a misfolded protein, betaamy balls resemble both AD Abeta senile plaques and neuronal inclusion bodies associated with other neurodegenerative diseases.  相似文献   

14.
Transactive response DNA-binding Protein of 43 kDa (TDP-43) assembles various aggregate forms, including biomolecular condensates or functional and pathological amyloids, with roles in disparate scenarios (e.g., muscle regeneration versus neurodegeneration). The link between condensates and fibrils remains unclear, just as the factors controlling conformational transitions within these aggregate species: Salt- or RNA-induced droplets may evolve into fibrils or remain in the droplet form, suggesting distinct end point species of different aggregation pathways. Using microscopy and NMR methods, we unexpectedly observed in vitro droplet formation in the absence of salts or RNAs and provided visual evidence for fibrillization at the droplet surface/solvent interface but not the droplet interior. Our NMR analyses unambiguously uncovered a distinct amyloid conformation in which Phe-Gly motifs are key elements of the reconstituted fibril form, suggesting a pivotal role for these residues in creating the fibril core. This contrasts the minor participation of Phe-Gly motifs in initiation of the droplet form. Our results point to an intrinsic (i.e., non-induced) aggregation pathway that may exist over a broad range of conditions and illustrate structural features that distinguishes between aggregate forms.

The prion-like domain of TDP-43 assembles biomolecular condensates which mature into amyloid fibrils that accumulate at the condensate/solvent interface. In vitro reconstitution of these fibrils reveals an amyloid core stabilized by residues that are not necessarily essential to create the droplet form.  相似文献   

15.
The [URE3] prion of Saccharomyces cerevisiae shares many features with mammalian prions and poly-glutamine related disorders and has become a model for studying amyloid diseases. The development of the [URE3] phenotype is thought to be caused by a structural switch in the Ure2p protein. In [URE3] cells, Ure2p is found predominantly in an aggregated state, while it is a soluble dimer in wild-type cells. In vitro, Ure2p forms fibrils with amyloid-like properties. Several studies suggest that the N-terminal domain of Ure2p is essential for prion formation. In this work, we investigated the fibril formation of Ure2p by isolating soluble oligomeric species, which are generated during fibrillization, and characterized them with respect to size and structure. Our data support the critical role of the N-terminal domain for fibril formation, as we observed fibrils in the presence of 5 M guanidinium chloride, conditions at which the C-terminal domain is completely unfolded. Based on fluorescence measurements, we conclude that the structure of the C-terminal domain is very similar in dimeric and fibrillar Ure2p. When studying the time course of fibrillization, we detected the formation of small, soluble oligomeric species during the early stages of the process. Their remarkable resistance against denaturants, their increased content of beta-structure, and their ability to 'seed' Ure2p fibrillization suggest that conversion to the amyloid-like conformation has already occurred. Thus, they likely represent critical intermediates in the fibrillization pathway of Ure2p.  相似文献   

16.
The amyloid beta peptide (A beta) is crucial for the pathogenesis of Alzheimer's disease. Aggregation of monomeric A beta into insoluble amyloid fibrils proceeds through several soluble A beta intermediates, including protofibrils, which are believed to be central in the disease process. The main reason for this is their implication in familial Alzheimer's disease with the Arctic amyloid precursor protein mutation (E693G). This mutation gives rise to early onset Alzheimer's disease, and synthetic A beta 1-40Arctic displays an enhanced rate of protofibril formation in vitro[Nilsberth C, Westlind-Danielsson A, Eckman CB, Condron MM, Axelman K, Forsell C, Stenh C, Luthman J, Teplow DB, Younkin SG, Naslund J & Lannfelt L. (2001) Nat Neurosci4, 887-893]. To increase our understanding of the mechanisms involved in A beta aggregation, especially A beta monomer oligomerization into protofibrils and protofibril fibrillization into fibrils, the kinetics of A beta 1-42wt and A beta 1-42Arctic aggregation were examined under different physiochemical conditions, such as concentration, temperature, ionic strength and pH. We used size exclusion chromatography for this purpose, where monomers are separated from protofibrils, and fibrils are separated from protofibrils in a centrifugation step. The Arctic mutation significantly accelerated both A beta 1-42wt protofibril formation and protofibril fibrillization. In addition, we demonstrated that two distinct chemical processes - monomer oligomerization and protofibril fibrillization - were affected differently by changes in the micro-environment and that the Arctic mutation alters the peptide response to such changes.  相似文献   

17.
It is widely accepted that the conversion of the soluble, nontoxic amyloid β-protein (Aβ) monomer to aggregated toxic Aβ rich in β-sheet structures is central to the development of Alzheimer's disease. However, the mechanism of the abnormal aggregation of Aβ in vivo is not well understood. We have proposed that ganglioside clusters in lipid rafts mediate the formation of amyloid fibrils by Aβ, the toxicity and physicochemical properties of which are different from those of amyloids formed in solution. In this paper, the mechanism by which Aβ-(1-40) fibrillizes in raftlike lipid bilayers composed of monosialoganglioside GM1, cholesterol, and sphingomyelin was investigated in detail on the basis of singular-value decomposition of circular dichroism data and analysis of fibrillization kinetics. At lower protein densities in the membrane (Aβ:GM1 ratio of less than ~0.013), only the helical species exists. At intermediate protein densities (Aβ:GM1 ratio between ~0.013 and ~0.044), the helical species and aggregated β-sheets (~15-mer) coexist. However, the β-structure is stable and does not form larger aggregates. At Aβ:GM1 ratios above ~0.044, the β-structure is converted to a second, seed-prone β-structure. The seed recruits monomers from the aqueous phase to form amyloid fibrils. These results will shed light on a molecular mechanism for the pathogenesis of the disease.  相似文献   

18.

Background

It is known that in vivo human prion protein (PrP) have the tendency to form fibril deposits and are associated with infectious fatal prion diseases, while the rabbit PrP does not readily form fibrils and is unlikely to cause prion diseases. Although we have previously demonstrated that amyloid fibrils formed by the rabbit PrP and the human PrP have different secondary structures and macromolecular crowding has different effects on fibril formation of the rabbit/human PrPs, we do not know which domains of PrPs cause such differences. In this study, we have constructed two PrP chimeras, rabbit chimera and human chimera, and investigated how domain replacement affects fibril formation of the rabbit/human PrPs.

Methodology/Principal Findings

As revealed by thioflavin T binding assays and Sarkosyl-soluble SDS-PAGE, the presence of a strong crowding agent dramatically promotes fibril formation of both chimeras. As evidenced by circular dichroism, Fourier transform infrared spectroscopy, and proteinase K digestion assays, amyloid fibrils formed by human chimera have secondary structures and proteinase K-resistant features similar to those formed by the human PrP. However, amyloid fibrils formed by rabbit chimera have proteinase K-resistant features and secondary structures in crowded physiological environments different from those formed by the rabbit PrP, and secondary structures in dilute solutions similar to the rabbit PrP. The results from transmission electron microscopy show that macromolecular crowding caused human chimera but not rabbit chimera to form short fibrils and non-fibrillar particles.

Conclusions/Significance

We demonstrate for the first time that the domains beyond PrP-H2H3 (β-strand 1, α-helix 1, and β-strand 2) have a remarkable effect on fibrillization of the rabbit PrP but almost no effect on the human PrP. Our findings can help to explain why amyloid fibrils formed by the rabbit PrP and the human PrP have different secondary structures and why macromolecular crowding has different effects on fibrillization of PrPs from different species.  相似文献   

19.
A key molecular event in prion diseases is the conversion of the prion protein (PrP) from its normal cellular form (PrPC) to the disease-specific form (PrPSc). The transition from PrPC to PrPSc involves a major conformational change, resulting in amorphous protein aggregates and fibrillar amyloid deposits with increased beta-sheet structure. Using recombinant PrP refolded into a beta-sheet-rich form (beta-PrP) we have studied the fibrillization of beta-PrP both in solution and in association with raft membranes. In low ionic strength thick dense fibrils form large networks, which coexist with amorphous aggregates. High ionic strength results in less compact fibrils, that assemble in large sheets packed with globular PrP particles, resembling diffuse aggregates found in ex vivo preparations of PrPSc. Here we report on the finding of a beta-turn-rich conformation involved in prion fibrillization that is toxic to neuronal cells in culture. This is the first account of an intermediate in prion fibril formation that is toxic to neuronal cells. We propose that this unusual beta-turn-rich form of PrP may be a precursor of PrPSc and a candidate for the neurotoxic molecule in prion pathogenesis.  相似文献   

20.
It is known that human muscle acylphosphatase (AcP) is able, under appropriate conditions in vitro, to aggregate and form amyloid fibrils of the type associated with human diseases. A number of compounds were tested for their ability to bind specifically to the native conformation of AcP under conditions favoring denaturation and subsequent aggregation and fibril formation. Compounds displaying different binding affinities for AcP were selected and their ability to inhibit protein fibrillization in vitro was evaluated. We found that compounds displaying a relatively high affinity for AcP are able to significantly delay protein fibrillization, mimicking the effect of stabilizing mutations; in addition, the effectiveness of such outcome correlates positively to both ligand concentration and affinity to the native state of AcP. By contrast, the inhibitory effect of ligands on AcP aggregation disappears in a mutant protein in which such binding affinity is lost. These results indicate that the stabilization of the native conformation of amyloidogenic proteins by specific ligand binding can be a strategy of general interest to inhibit amyloid formation in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号