首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Vγ9Vδ2 T cells play a major role as effector cells of innate immune responses against microbes, stressed cells, and tumor cells. They constitute <5% of PBLs but can be expanded by zoledronic acid (ZA)-treated monocytes or dendritic cells (DC). Much less is known about their ability to act as cellular adjuvants bridging innate and adaptive immunity, especially in patients with cancer. We have addressed this issue in multiple myeloma (MM), a prototypic disease with several immune dysfunctions that also affect γδ T cells and DC. ZA-treated MM DC were highly effective in activating autologous γδ T cells, even in patients refractory to stimulation with ZA-treated monocytes. ZA inhibited the mevalonate pathway of MM DC and induced the intracellular accumulation and release into the supernatant of isopentenyl pyrophosphate, a selective γδ T cell activator, in sufficient amounts to induce the proliferation of γδ T cells. Immune responses against the tumor-associated Ag survivin (SRV) by MHC-restricted, SRV-specific CD8(+) αβ T cells were amplified by the concurrent activation of γδ T cells driven by autologous DC copulsed with ZA and SRV-derived peptides. Ancillary to the isopentenyl pyrophosphate-induced γδ T cell proliferation was the mevalonate-independent ZA ability to directly antagonize regulatory T cells and downregulate PD-L2 expression on the DC cell surface. In conclusion, ZA has multiple immune modulatory activities that allow MM DC to effectively handle the concurrent activation of γδ T cells and MHC-restricted CD8(+) αβ antitumor effector T cells.  相似文献   

3.
4.
T cells have been classified as belonging to the Th1 or Th2 subsets according to the production of defining cytokines such as IFN-γ and IL-4. The discovery of the Th17 lineage and regulatory T cells shifted the simple concept of the Th1/Th2 balance into a 4-way mechanistic pathway of local and systemic immunological activity. Clinically, the blockage of cytokine signals or non-specific suppression of cytokine predominance by immunosuppressants is the first-line treatment for inflammatory T cell-mediated disorders. Cyclosporine A (CsA) and Tacrolimus (Tac) are commonly used immunosuppressants for the treatment of autoimmune disease, psoriasis, and atopic disorders. Many studies have shown that these compounds suppress the activation of the calcium-dependent phosphatase calcineurin, thereby inhibiting T-cell activation. Although CsA and Tac are frequently utilized, their pharmacological mechanisms have not yet been fully elucidated.In the present study, we focused on the effects of CsA and Tac on cytokine secretion from purified human memory CD4(+)T cells and the differentiation of na?ve T cells into cytokine-producing memory T cells. CsA or Tac significantly inhibited IFN-γ, IL-4, and IL-17 production from memory T cells. These compounds also inhibited T cell differentiation into the Th1, Th2, and Th17 subsets, even when used at a low concentration. This study provided critical information regarding the clinical efficacies of CsA and Tac as immunosuppressants.  相似文献   

5.
6.
《Cell calcium》2016,59(6):598-605
TαT1 cells are mouse thyrotroph cell line frequently used for studies on thyroid-stimulating hormone beta subunit gene expression and other cellular functions. Here we have characterized calcium-signaling pathways in TαT1 cells, an issue not previously addressed in these cells and incompletely described in native thyrotrophs. TαT1 cells are excitable and fire action potentials spontaneously and in response to application of thyrotropin-releasing hormone (TRH), the native hypothalamic agonist for thyrotrophs. Spontaneous electrical activity is coupled to small amplitude fluctuations in intracellular calcium, whereas TRH stimulates both calcium mobilization from intracellular pools and calcium influx. Non-receptor-mediated depletion of intracellular pool also leads to a prominent facilitation of calcium influx. Both receptor and non-receptor stimulated calcium influx is substantially attenuated but not completely abolished by inhibition of voltage-gated calcium channels, suggesting that depletion of intracellular calcium pool in these cells provides a signal for both voltage-independent and -dependent calcium influx, the latter by facilitating the pacemaking activity. These cells also express purinergic P2Y1 receptors and their activation by extracellular ATP mimics TRH action on calcium mobilization and influx. The thyroid hormone triiodothyronine prolongs duration of TRH-induced calcium spikes during 30-min exposure. These data indicate that TαT1 cells are capable of responding to natively feed-forward TRH signaling and intrapituitary ATP signaling with acute calcium mobilization and sustained calcium influx. Amplification of TRH-induced calcium signaling by triiodothyronine further suggests the existence of a pathway for positive feedback effects of thyroid hormones probably in a non-genomic manner.  相似文献   

7.
Can resting B cells present antigen to T cells?   总被引:3,自引:0,他引:3  
Antigen stimulation of T lymphocytes can occur only in the presence of an antigen-presenting cell (APC). An ever-increasing number of cell types have been found to act as APCs; these include macrophages, splenic and lymph node dendritic cells, and Langerhans' cells of the skin. Although activated B lymphocytes and B cell lymphomas are known to serve as APCs, it has been generally believed that resting B cells cannot perform this function. However, in recent studies we have found that resting B cells can indeed present soluble antigen to T cell clones as well as to antigen-primed T cells. The previous difficulty in demonstrating this activity can be explained by the finding that, in contrast to macrophages and dendritic cells, the antigen-presenting ability of resting B cells is very radiosensitive. Macrophages are usually irradiated with 2000-3300 rads to prevent them from incorporating [3H]thymidine in the T cell proliferation assay. Resting B cells, however, begin to lose presenting function at 1500 rads and have completely lost this activity at 3300 rads. It was also possible to distinguish two distinct T cell clonal phenotypes when resting B cells were used as APCs on the basis of two different assays (T cell proliferation, and B cell proliferation resulting from T cell activation). The majority of T cell clones tested were capable of both proliferating themselves and inducing the proliferation of B cells. Some T cells clones, however, could not proliferate in the presence of antigen and B cell APCs, although they were very good at inducing the proliferation of B cells. This suggests that there are two distinct pathways of T cell activation, one leading to T cell proliferation and the other leading only to the release of lymphokines (as measured by the polyclonal activation of B cells).  相似文献   

8.
9.
The mechanism whereby IL-17 drives rheumatoid arthritis remains incompletely understood. We demonstrate that anti-IL-17 therapy in collagen-induced arthritis ameliorates bone damage by reducing the number of osteoclasts in joints. We found equal numbers of CD4(+) Th17 and IL-17 producing γδ T cells in the joints of arthritic mice, and in vitro, both populations similarly induced osteoclastogenesis. However, individual depletion and adoptive transfer studies revealed that in vivo, Th17 cells dominated with regard to bone destruction. Unlike γδ T cells, Th17 cells were found in apposition to tartrate-resistant acid phosphatase positive osteoclasts in subchondral areas of inflamed joints, a pattern reproduced in patient biopsies. This localization was caused by Ag-specific retention, because OVA-primed Th17 cells showed a γδ T cell-like diffuse distribution. Because IL-23, as produced by osteoclasts, enhanced T cell-mediated osteoclastogenesis, we propose that Ag-specific juxtaposition is key to foster the molecular cross talk of Th17 cells and osteoclasts, thus driving arthritic bone destruction.  相似文献   

10.
11.
NKT cells, na?ve CD4(+) T cells, and TCR-gammadelta T cells belong to distinct T cell lineages but all express T cell receptors generated through random combinatorial joining of V-(D)-J genes. These distinct lineage T cells also possess the property of promptly activating the IL-4 gene upon T cell receptor stimulation. A comparative accounting of features as they pertain to IL-4 inducibility in these three distinct lineage T cells is provided here.  相似文献   

12.
13.
14.
The ability to regulate ongoing inflammation using regulatory T cells (Tregs) is under intense investigation. Strategies to induce and expand Ag-specific Tregs are being developed, and whether various types of Tregs are suppressive in the inflammatory conditions associated with ongoing disease needs to be determined. In this study, we report that TGF-β-induced Tregs (iTregs) and expanded Tregs specific for a major self-Ag in autoimmune gastritis suppress inflammation and associated pathology when administered late in the process of ongoing disease. Transferred iTregs localized to the stomach, maintained Foxp3 and suppressor functions, and engaged several distinct mechanisms to alleviate disease progression. In addition to suppressing the production of inflammatory cytokines in the stomach and preventing the destruction of parietal cells, we show that iTregs secrete numerous chemokines and regulate both iTreg and effector T cell trafficking into the stomach. These data support efforts to use iTregs in therapies to treat autoimmunity and inflammatory diseases and provide novel insight into the biological mechanisms of iTreg-mediated immune suppression.  相似文献   

15.
Following in vitro sensitization with HSV-infected cells, Tγ cells comprise most of the cytotoxic effector cell population. However, whereas freshly obtained Tγ cells exhibit theophylline sensitivity in the sheep erythrocyte rosette assay, presensitized Tγ cells are theophylline resistant. Similarly, when T cells are fractionated according to their theophylline sensitivity before the sensitization culture, theophylline-resistant Tμ cells appear as the precursors of Tγ cytotoxic effector cells, the Tμ-Tγ switch occurring with a transitory eclipse of Fc receptors, and maintenance of theophylline resistance.  相似文献   

16.
Anti-neutrophil cytoplasmic antibody (ANCA) - associated vasculitis (AAV) is a life-threatening autoimmune disease characterized by an antibody-mediated glomerulonephritis and necrotizing vasculitis. Apart from antibodies, T cells are also involved in disease pathogenesis. This review stresses the hallmarks of T cell-mediated pathology in AAV and highlights the characteristics of lesional and circulating T cells in the immune response in AAV. Circulating effector T-cell populations are expanded and are in a persistent state of activation. Circulating regulatory T-cell subsets are less well characterized but seem to be impaired in function. Lesional effector T cells are present in granulomas, vasculitic lesions, and nephritis. Lesional T cells usually show pro-inflammatory properties and promote granuloma formation. Apart from T cells, dendritic cells are abundantly present at the sites of inflammation and locally orchestrate the immune response. Targeting the above-mentioned T cell-mediated disease mechanisms will potentially provide powerful therapeutic tools for AAV.  相似文献   

17.
Recent reports have provided evidence for cross-talk between regulatory T (Treg) cells and natural killer T (NKT) cells. However, it is unclear whether NKT cells play a role in the differentiation of Treg cells. By employing NKT cell-abundant Vα14 TCR transgenic (Tg) and NKT cell-deficient CD1d knock-out (KO) mice, we examined the effects of NKT cells on the in vitro differentiation of induced Treg (iTreg) cells with IL2 and TGFβ. We found that iTreg induction from CD1d KO mice was significantly increased compared to the control. Also, the addition of isolated NKT cells from Vα14 TCR Tg mice to naïve CD4+ T cells from CD1d KO mice during iTreg differentiation caused a remarkable reduction of iTreg cells. Through IFNγ neutralization, we showed that this reduction was mediated by IFNγ. Furthermore, the main source of IFNγ during iTreg differentiation was NK1.1CD4+Foxp3 T cells. This finding implied that early-activated NKT cells induced Th1-type cells and subsequently underwent apoptosis. Taken together, our results suggest that NKT cells inhibit the in vitro development of iTreg cells by increasing IFNγ.  相似文献   

18.
19.
20.
Although glucocorticosteroids (GCSs) have been used for many decades in transplantation and (auto)inflammatory diseases, the exact mechanisms responsible for their immunosuppressive properties are not fully understood. The purpose of this study was to characterize the effects of oral GCSs on the cutaneous immune response. We analyzed, by immunofluorescence staining and quantitative RT-PCR, residual skin biopsy material from a clinical study in which we had used oral GCS as positive control for determining the effects of candidate anti-inflammatory compounds on epicutaneous patch tests of Ni-allergic patients. Expectedly, oral GCS treatment led to a reduction of clinical symptoms and infiltrating leukocytes. Notably, we observed increased numbers of dermal FOXP3(+)CD25(+) T cells and epidermal Langerhans cells (LCs) that were associated with upregulated mRNA expression of TGF-β in lesions of GCS-treated Ni-allergic patients. To investigate this phenomenon further, we exposed purified LCs to GCS. They exhibited, in contrast to GCS-nonexposed LCs, 1) a more immature phenotype, 2) higher intracellular amounts of TGF-β, and 3) increased receptor activator for NF-κB expression, conditions that reportedly favor the expansion of regulatory T cells (Tregs). Indeed, we observed an enhancement of functionally suppressive FOXP3(+) T cells when CD3(+) cells were incubated with GCS-pretreated LCs. The expansion of Tregs was inhibited by TGF-β blockage alone, and their suppressive activity was neutralized by a combination of anti-TGF-β and anti-IL-10 Abs. Our data show that systemically applied GCSs endow LCs with Treg-promoting properties and thus shed new light on the mechanisms of GCS-mediated immunosuppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号