首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CP32M is a newly designed peptide fusion inhibitor possessing potent anti-HIV activity, especially against T20-resistant HIV-1 strains. In this study, we show that CP32M can efficiently inhibit a large panel of diverse HIV-1 variants, including subtype B', CRF07_BC, and CRF01_AE recombinants and naturally occurring or induced T20-resistant viruses. To elucidate its mechanism of action, we determined the crystal structure of CP32M complexed with its target sequence. Differing from its parental peptide, CP621-652, the (621)VEWNEMT(627) motif of CP32M folds into two α-helix turns at the N terminus of the pocket-binding domain, forming a novel layer in the six-helix bundle structure. Prominently, the residue Asn-624 of the (621)VEWNEMT(627) motif is engaged in the polar interaction with a hydrophilic ridge that borders the hydrophobic pocket on the N-terminal coiled coil. The original inhibitor design of CP32M provides several intra- and salt bridge/hydrogen bond interactions favoring the stability of the helical conformation of CP32M and its interactions with N-terminal heptad repeat (NHR) targets. We identified a novel salt bridge between Arg-557 on the NHR and Glu-648 of CP32M that is critical for the binding of CP32M and resistance against the inhibitor. Therefore, our data present important information for developing novel HIV-1 fusion inhibitors for clinical use.  相似文献   

2.
The core structure of HIV-1 gp41 is a stable six-helix bundle (6-HB) folded by its trimeric N- and C-terminal heptad repeats (NHR and CHR). We previously identified that the (621)QIWNNMT(627) motif located at the upstream region of gp41 CHR plays critical roles for the stabilization of the 6-HB core and peptide CP621-652 containing this motif is a potent HIV-1 fusion inhibitor, however, the molecular determinants underlying the stability and anti-HIV activity remained elusive. In this study, we determined the high-resolution crystal structure of CP621-652 complexed by T21. We find that the (621)QIWNNMT(627) motif does not maintain the α-helical conformation. Instead, residues Met(626) and Thr(627) form a unique hook-like structure (denoted as M-T hook), in which Thr(627) redirects the peptide chain to position Met(626) above the left side of the hydrophobic pocket on the NHR trimer. The side chain of Met(626) caps the hydrophobic pocket, stabilizing the interaction between the pocket and the pocket-binding domain. Our mutagenesis studies demonstrate that mutations of the M-T hook residues could completely abolish HIV-1 Env-mediated cell fusion and virus entry, and significantly destabilize the interaction of NHR and CHR peptides and reduce the anti-HIV activity of CP621-652. Our results identify an unusual structural feature that stabilizes the six-helix bundle, providing novel insights into the mechanisms of HIV-1 fusion and inhibition.  相似文献   

3.
Enfuvirtide (ENF) is currently the only FDA approved HIV fusion inhibitor in clinical use. Searching for more drugs in this category with higher efficacy and lower toxicity seems to be a logical next step. In line with this objective, a synthetic peptide with 36 amino acid residues, called Sifuvirtide (SFT), was designed based on the crystal structure of gp41. In this study, we show that SFT is a potent anti-HIV agent with relatively low cytotoxicity. SFT was found to inhibit replication of all tested HIV strains. The effective concentrations that inhibited 50% viral replication (EC50), as determined in all tested strains, were either comparable or lower than benchmark values derived from well-known anti-HIV drugs like ENF or AZT, while the cytotoxic concentrations causing 50% cell death (CC50) were relatively high, rendering it an ideal anti-HIV agent.A GST-pull down assay was performed to confirm that SFT is a fusion inhibitor. Furthermore, the activity of SFT on other targets in the HIV life cycle was also investigated, and all assays showed negative results. To further understand the mechanism of action of HIV peptide inhibitors, resistant variants of HIV-1IIIB were derived by serial virus passage in the presence of increasing doses of SFT or ENF. The results showed that there was cross-resistance between SFT and ENF.In conclusion, SFT is an ideal anti-HIV agent with high potency and low cytotoxicity, but may exhibit a certain extent of cross-resistance with ENF.  相似文献   

4.
CP621-652 is a potent HIV-1 fusion inhibitor peptide derived from the C-terminal heptad repeat of gp41. We recently identified that its N-terminal residues Met-626 and Thr-627 adopt a unique hook-like structure (termed M-T hook) thus stabilizing the interaction of the inhibitor with the deep pocket on the N-terminal heptad repeat. In this study, we further demonstrated that the M-T hook structure is a key determinant of CP621-652 in terms of its thermostability and anti-HIV activity. To directly define the structure and function of the M-T hook, we generated the peptide MT-C34 by incorporating Met-626 and Thr-627 into the N terminus of the C-terminal heptad repeat-derived peptide C34. The high resolution crystal structure (1.9 Å) of MT-C34 complexed by an N-terminal heptad repeat-derived peptide reveals that the M-T hook conformation is well preserved at the N-terminal extreme of the inhibitor. Strikingly, addition of two hook residues could dramatically enhance the binding affinity and thermostability of 6-helix bundle core. Compared with C34, MT-C34 exhibited significantly increased activity to inhibit HIV-1 envelope-mediated cell fusion (6.6-fold), virus entry (4.5-fold), and replication (6-fold). Mechanistically, MT-C34 had a 10.5-fold higher increase than C34 in blocking 6-helix bundle formation. We further showed that MT-C34 possessed higher potency against T20 (Enfuvirtide, Fuzeon)-resistant HIV-1 variants. Therefore, this study provides convincing data for our proposed concept that the M-T hook structure is critical for designing HIV-1 fusion inhibitors.  相似文献   

5.
We reported the design of fusion inhibitors with improved activity using a multivalent inhibitor design strategy. First, we chose C29 as the template sequence, which is a 29-mer peptide derived from HIV-1 gp41 CHR domain and has anti-HIV activity of IC50 118 nM in a cell–cell fusion assay. We optimized the crosslink sites and linkers of the template peptide. We found that N-terminal crosslink caused activity improvement based on the multivalent co-operative effect. Especially, the IC50 of peptide (CAcaC29)2 was improved from 49.02 (monomeric form) to 5.71 nM. Compared with long peptides, short peptides may be more suitable to analyze the co-operative effect. So we selected a shorter peptide C22 to synthesize the bivalent inhibitors. Due its weak helicity, no co-operative effect appeared. Therefore, we chose SC22EK, which were introduced salt bridges to consolidate the helicity based on the natural sequence C22. The cross-linked (CAcaSC22EK)2 was four times more potent than the monomer SC22EK in anti-HIV activity, with an IC50 value of 4.92 nM close to the high active peptide fusion inhibitor C34. The strategy used in this study may be used to design new fusion inhibitors to interfere similar processes.  相似文献   

6.
Chong H  Yao X  Zhang C  Cai L  Cui S  Wang Y  He Y 《PloS one》2012,7(3):e32599
Albuvirtide (ABT) is a 3-maleimimidopropionic acid (MPA)-modified peptide HIV fusion inhibitor that can irreversibly conjugate to serum albumin. Previous studies demonstrated its in vivo long half-life and potent anti-HIV activity. Here, we focused to characterize its biophysical properties and evaluate its antiviral spectrum. In contrast to T20 (Enfuvirtide, Fuzeon), ABT was able to form a stable α-helical conformation with the target sequence and block the fusion-active six-helix bundle (6-HB) formation in a dominant-negative manner. It efficiently inhibited HIV-1 Env-mediated cell membrane fusion and virus entry. A large panel of 42 HIV-1 pseudoviruses with different genotypes were constructed and used for the antiviral evaluation. The results showed that ABT had potent inhibitory activity against the subtypes A, B and C that predominate the worldwide AIDS epidemics, and subtype B', CRF07_BC and CRF01_AE recombinants that are currently circulating in China. Furthermore, ABT was also highly effective against HIV-1 variants resistant to T20. Taken together, our data indicate that the chemically modified peptide ABT can serve as an ideal HIV-1 fusion inhibitor.  相似文献   

7.
HIV entry is mediated by the envelope glycoproteins gp120 and gp41. The gp41 subunit contains several functional domains: the N-terminal heptad repeat (NHR) domains fold a triple stranded coiled-coil forming a meta-stable prefusion intermediate. C-terminal heptad repeat (CHR) subsequently folds onto the hydrophobic grooves of the NHR coiled-coil to form a stable 6-helix bundle, which juxtaposes the viral and cellular membranes for fusion. The C34 which has 34 amino acid residues is known as the core structure in CHR. A highly anti-HIV peptide inhibitor derived from C34 was designed. An artificial salt bridge was added in the 6-helical bundle by substitution of lysine for Ile646. With a cholesterol modification at C-terminal, the inhibitor containing I646K mutation represented higher anti-viral activity than C34–cholesterol combination without mutation.  相似文献   

8.
He Y  Cheng J  Li J  Qi Z  Lu H  Dong M  Jiang S  Dai Q 《Journal of virology》2008,82(13):6349-6358
Human immunodeficiency virus type 1 (HIV-1) entry into the host cell involves a cascade of events and currently represents one of most attractive targets in the search for new antiviral drugs. The fusion-active gp41 core structure is a stable six-helix bundle (6-HB) folded by its trimeric N-terminal heptad repeat (NHR) and C-terminal heptad repeat (CHR). Peptides derived from the CHR region of HIV-1 gp41 are potent fusion inhibitors that target the NHR to block viral and cellular membrane fusion in a dominant negative fashion. However, all CHR peptides reported to date are derived primarily from residues 628 to 673 of gp41; little attention has been paid to the upstream sequence of the pocket binding domain (PBD) in the CHR. Here, we have identified a motif ((621)QIWNNMT(627)) located at the upstream region of the gp41 CHR, immediately adjacent to the PBD ((628)WMEWEREI(635)). Biophysical characterization demonstrated that this motif is critical for the stabilization of the gp41 6-HB core. The peptide CP621-652, containing the (621)QIWNNMT(627) motif, was able to interact with T21, a counterpart peptide derived from the NHR, to form a typical 6-HB structure with a high thermostability (thermal unfolding transition [T(m)] value of 82 degrees C). In contrast, the 6-HB formed by the peptides N36 and C34, which has been considered to be a core structure of the fusion-active gp41, had a T(m) of 64 degrees C. Different from T-20 (brand name Fuseon), which is the first and only HIV-1 fusion inhibitor approved for clinical use, CP621-652 could efficiently block 6-HB formation in a dose-dependent manner. Significantly, CP621-652 had potent inhibitory activity against HIV-1-mediated cell-cell fusion and infection, especially against T-20- and C34-resistant virus. Therefore, our works provide important information for understanding the core structure of the fusion-active gp41 and for designing novel anti-HIV peptides.  相似文献   

9.
N-terminal heptad repeat (NHR)-derived peptide (N-peptide) fusion inhibitors, which are derived from human immunodeficiency virus (HIV) envelope glycoprotein 41 (gp41), are limited by aggregation and unstable trimer conformation. However, they could function as potent inhibitors of viral infection by forming a coiled-coil structure covalently stabilized by interchain disulfide bonds. We previously synthesized N-peptides with potent anti-HIV-1 activity and high stability by coiled-coil fusion and covalent stabilization. Here, we attempted to study the effects of NHRs of chimeric N-peptides by fusing de novo coiled-coil isopeptide bridge-tethered T21 peptides of different NHR lengths. Peptides (T21N23)3 and (T21N36)3 was a more potent HIV-1 fusion inhibitor than (T21N17)3. The site of isopeptide bond formation was precisely controlled and had little influence on N-peptide properties. The N-peptide (T21N36)3, which had a similar conformation as the NHR trimer and interacted well with the C34 peptide, may be useful for screening other C-peptides and small-molecule fusion inhibitors, and for studying the interactions between the NHR trimer and C-terminal heptad repeats.  相似文献   

10.
Peptides derived from N-terminal heptad repeat (NHR) of the HIV-1 gp41 are generally poor inhibitors of HIV-1 entry, because they tend to aggregate and do not form a trimeric coiled-coil. In this study, we have fused portions of gp41 NHR, e.g. N36 or N28, to the T4 fibritin trimerization domain, Foldon (Fd), thus constructing novel NHR trimers, designated N36Fd or N28Fd, which could be expressed in Escherichia coli cells. The purified N36Fd and N28Fd exhibited SDS-resistant trimeric coiled-coil conformation with improved α-helicity compared with the corresponding N-peptides. They could interact with a C-peptide (e.g. C34) to form stable six-helix bundle and possessed potent anti-HIV-1 activity against a broad spectrum of HIV-1 strains. N28Fd was effective against T20-resistant HIV-1 variants and more resistant to proteinase K compared with T20 (enfuvirtide), a C-peptide-based HIV fusion inhibitor. Therefore, N28Fd trimer has great potentials for further development as an affordable therapeutic or microbicide for treatment and prevention of HIV-1 infection.  相似文献   

11.
X Wang  W Xiong  X Ma  M Wei  Y Chen  L Lu  AK Debnath  S Jiang  C Pan 《PloS one》2012,7(9):e44874
During the process of HIV-1 fusion with the target cell, the N-terminal heptad repeat (NHR) of gp41 interacts with the C-terminal heptad repeat (CHR) to form fusogenic six-helix bundle (6-HB) core. We previously identified a crucial residue for 6-HB formation and virus entry - Lys63 (K63) in the C-terminal region of NHR (aa 54-70), which forms a hydrophobic cavity. It can form an important salt bridge with Asp121 (D121) in gp41 CHR. Here, we found another important conserved residue for virus fusion and entry, Arg46 (R46), in the N-terminal region of NHR (aa 35-53), which forms a hydrogen bond with a polar residue, Asn43 (N43), in NHR, as a part of the hydrogen-bond network. R46 can also form a salt bridge with a negatively charged residue, Glu137 (E137), in gp41 CHR. Substitution of R46 with the hydrophobic residue Ala (R46A) or the negatively charged residue Glu (R46E) resulted in disruption of the hydrogen bond network, breakage of the salt bridge and reduction of 6-HB's stability, leading to impairment of viral fusion and decreased inhibition of N36, an NHR peptide. Similarly, CHR peptide C34 with substitution of E137 for Ala (E137A) or Arg (E137R) also exhibited reduced inhibitory activity against HIV-1 infection and HIV-1-mediated cell-to-cell fusion. These results suggest that the positively charged residue R46 and its hydrogen bond network, together with the salt bridge between R46 and E137, are important for viral fusion and entry and may therefore serve as a target for designing novel HIV fusion/entry inhibitors.  相似文献   

12.
Viral fusion proteins are intriguing molecular machines that undergo drastic conformational changes to facilitate virus-cell membrane fusion. During fusion a hydrophobic region of the protein, termed the fusion peptide (FP), is inserted into the target host cell membrane, with subsequent conformational changes culminating in membrane merger. Class I fusion proteins contain FPs between 20 and 30 amino acids in length that are highly conserved within viral families but not between. To examine the sequence dependence of the Hendra virus (HeV) fusion (F) protein FP, the first eight amino acids were mutated first as double, then single, alanine mutants. Mutation of highly conserved glycine residues resulted in inefficient F protein expression and processing, whereas substitution of valine residues resulted in hypofusogenic F proteins despite wild-type surface expression levels. Synthetic peptides corresponding to a portion of the HeV F FP were shown to adopt an α-helical secondary structure in dodecylphosphocholine micelles and small unilamellar vesicles using circular dichroism spectroscopy. Interestingly, peptides containing point mutations that promote lower levels of cell-cell fusion within the context of the whole F protein were less α-helical and induced less membrane disorder in model membranes. These data represent the first extensive structure-function relationship of any paramyxovirus FP and demonstrate that the HeV F FP and potentially other paramyxovirus FPs likely require an α-helical structure for efficient membrane disordering and fusion.  相似文献   

13.
Human immunodeficiency virus type 1 (HIV-1), the pathogen of acquired immunodeficiency syndrome (AIDS), causes about 2 million people to death every year. Fusion inhibitors targeted the envelope protein (gp41) represent a novel and alternative approach for anti-AIDS therapy, which terminates the HIV-1 life cycle at an early stage. Using CP621-652 as a template, a series of peptides were designed, synthesized and evaluated in vitro assays. An interesting phenomenon was found that the substitution of hydrophobic residues at solvent accessible sites could increase the anti-HIV activity when the C-terminal sequence was extended with an enough numbers of amino acids. After the active peptides was synthesized and evaluated, peptide 8 showed the best anti-HIV-1 IIIB whole cell activity (MAGI IC50 = 53.02 nM). Further study indicated that peptide 8 bound with the gp41 NHR helix, and then blocked the conformation of 6-helix, thus inhibited virus–cell membrane fusion. The results would be helpful for the design of peptide fusion inhibitors against HIV-1 infection.  相似文献   

14.
HIV-1 gp41 prehairpin fusion intermediate (PFI) composed of three N-terminal heptad repeats (NHR) plays a crucial role in viral fusion and entry and represents an attractive target for anti-HIV therapeutics (e.g., enfuvirtide) and vaccines. In present study, we constructed and expressed two recombinant gp41 PFI mimetics, designated N46Fd and N46FdFc. N46Fd consists of N46 (residues 536-581) in gp41 NHR and foldon (Fd), a trimerization motif. N46FdFc is composed of N46Fd fused with human IgG Fc fragment as an immunoenhancer. We immunized mice with N46 peptide, N46Fd and N46FdFc, respectively, and found that only N46FdFc elicited neutralizing antibody response in mice against infection by HIV-1 strains IIIB (clade B, X4), 92US657 (clade B, R5), and 94UG103 (clade A, X4R5). Anti-N46FdFc antibodies inhibited PIE7 binding to PFI, blocked gp41 six-helix bundle formation, and suppressed HIV-1 mediated cell-cell fusion. These findings provide an important clue for developing recombinant gp41 PFI mimetics-based HIV vaccines.  相似文献   

15.
The reovirus fusion-associated small transmembrane (FAST) proteins are the smallest known viral membrane fusion proteins. With ectodomains of only ∼20–40 residues, it is unclear how such diminutive fusion proteins can mediate cell-cell fusion and syncytium formation. Contained within the 40-residue ectodomain of the p10 FAST protein resides an 11-residue sequence of moderately apolar residues, termed the hydrophobic patch (HP). Previous studies indicate the p10 HP shares operational features with the fusion peptide motifs found within the enveloped virus membrane fusion proteins. Using biotinylation assays, we now report that two highly conserved cysteine residues flanking the p10 HP form an essential intramolecular disulfide bond to create a cystine loop. Mutagenic analyses revealed that both formation of the cystine loop and p10 membrane fusion activity are highly sensitive to changes in the size and spatial arrangement of amino acids within the loop. The p10 cystine loop may therefore function as a cystine noose, where fusion peptide activity is dependent on structural constraints within the noose that force solvent exposure of key hydrophobic residues. Moreover, inhibitors of cell surface thioreductase activity indicate that disruption of the disulfide bridge is important for p10-mediated membrane fusion. This is the first example of a viral fusion peptide composed of a small, spatially constrained cystine loop whose function is dependent on altered loop formation, and it suggests the p10 cystine loop represents a new class of viral fusion peptides.  相似文献   

16.
To address the structure-function relationship of discrete regions within the gp41 ectodomain, 70-residue peptide constructs corresponding to the N-terminal subdomain of the HIV-1 gp41 ectodomain were examined in a membrane-associated context. These fragments encompass both fusion peptide (FP) and N-terminal heptad repeat (NHR) regions, and model the N-terminal half of the pre-hairpin intermediate (PHI), which is believed to be the target of the potent entry inhibitor DP-178, recently approved by the FDA. Using mutants, we attempted to map the structural organization of the N-terminal subdomain. Our results suggest that the N-terminal subdomain contains two discrete structural regions: the FP adopts a beta-sheet conformation and the NHR is alpha-helical. This structural make-up is essential for fusogenic function, since loss of function mutants exhibit both a significant reduction in region-specific secondary structure as well as significant impairment in lipid mixing of large unilamellar vesicles. Our results, delineating membrane-associated structure of the FP region differ from previous ones by inclusion of the autonomous oligomerization domain (NHR), which likely contributes to stabilization of the FP structure. Correspondingly, the alpha-helical structure for the NHR, in context of the FP, correlates with structural predictions for this region in both the hairpin and PHI conformations during fusion. Based on our results, we postulate how oligomerization of regions in this sub-domain is essential for fusion pore formation.  相似文献   

17.
Lu L  Tong P  Yu X  Pan C  Zou P  Chen YH  Jiang S 《Biochimica et biophysica acta》2012,1818(12):2950-2957
Enfuvirtide (T20), the first FDA-approved peptide HIV fusion/entry inhibitor derived from the HIV-1 gp41 C-terminal heptad-repeat (CHR) domain, is believed to share a target with C34, another well-characterized CHR-peptide, by interacting with the gp41 N-terminal heptad-repeat (NHR) to form six-helix bundle core. However, our previous studies showed that T20 mainly interacts with the N-terminal region of the NHR (N-NHR) and lipid membranes, while C34 mainly binds to the NHR C-terminal pocket region. But so far, no one has shown that C34 can induce drug-resistance mutation in the gp41 pocket region. In this study, we constructed pseudoviruses in which the Ala at the position of 67 in the gp41 pocket region was substituted with Asp, Gly or Ser, respectively, and found that these mutations rendered the viruses highly resistant to C34, but sensitive to T20. The NHR-peptide N36 with mutations of A67 exhibited reduced anti-HIV-1 activity and decreased α-helicity. The stability of six-helix bundle formed by C34 and N36 with A67 mutations was significantly lower than that formed by C34 and N36 with wild-type sequence. The combination of C34 and T20 resulted in potent synergistic anti-HIV-1 effect against the viruses with mutations in either N- or C-terminal region in NHR. These results suggest that C34 with a pocket-binding domain and T20 containing the N-NHR- and membrane-binding domains inhibit HIV-1 fusion by interacting with different target sites and the combinatorial use of C34 and T20 is expected to be effective against HIV-1 variants resistant to HIV fusion inhibitors.  相似文献   

18.
The 20 N-terminal residues of the HA2 subunit of influenza hemagglutinin (HA), known as the fusion peptide, play a crucial role in membrane fusion. Molecular dynamics simulations with implicit solvation are employed here to study the structure and orientation of the fusion peptide in membranes. As a monomer the α-helical peptide adopts a shallow, slightly tilted orientation along the lipid tail-head group interface. The average angle of the peptide with respect to membrane plane is 12.4 °. We find that the kinked structure proposed on the basis of NMR data is not stable in our model because of the high energy cost related to the membrane insertion of polar groups. Because hemagglutinin-mediated membrane fusion is promoted by low pH, we examined the effect of protonation of the Glu and Asp residues. The configurations of the protonated peptides were slightly deeper in the membrane but at similar angles. Finally, because HA is a trimer, we modeled helical fusion peptide trimers. We find that oligomerization affects the insertion depth of the peptide and its orientation with respect to the membrane: a trimer exhibits equally favorable configurations in which some or all of the helices in the bundle insert obliquely deep into the membrane.  相似文献   

19.
The fusion-active HIV-1 gp41 core structure is a stable six-helix bundle (6-HB) formed by its N- and C-terminal heptad-repeat sequences (NHR and CHR). A highly conserved, deep hydrophobic cavity on the surface of the N-helical trimer is important for stability of the 6-HB and serves as an ideal target for developing anti-human immunodeficiency virus (HIV) fusion inhibitors. We have recently identified several small molecule HIV-1 fusion inhibitors that bind to the gp41 cavity through hydrophobic and ionic interactions and block the gp41 6-HB formation. Molecular docking analysis reveals that these small molecules fit inside the hydrophobic cavity and interact with positively charged residue Lys574 to form a conserved salt bridge. In this study, the functionality of Lys574 has been finely characterized by mutational analysis and biophysical approaches. We found that substitutions of Lys574 with non-conserved residues (K574D, K574E, and K574V) could completely abolish virus infectivity. With a set of wild-type and mutant N36 peptides derived from the NHR sequence as a model, we demonstrated that non-conservative Lys574 substitutions severely impaired the stability and conformation of 6-HBs as detected by circular dichroism spectroscopy, native polyacrylamide gel electrophoresis, and enzyme-linked immunosorbent assay. The binding affinity of N36 mutants bearing non-conservative Lys574 substitutions to the peptide C34 derived from the CHR sequence dramatically decreased as measured by isothermal titration calorimetry. These substitutions also significantly reduced the potency of N-peptides to inhibit HIV-1 infection. Collectively, these data suggest that conserved Lys574 plays a critical role in 6-HB formation and HIV-1 infectivity, and may serve as an important target for designing anti-HIV drugs.  相似文献   

20.
T20 (enfuvirtide, Fuzeon) is the first generation HIV-1 fusion inhibitor approved for salvage therapy of HIV-1-infected patients refractory to current antiretroviral drugs. However, its application is limited by the high cost of peptide synthesis, rapid proteolysis, and poor efficacy against emerging drug-resistant strains. Here we reported the design of a novel chimera protein-based fusion inhibitor targeting gp41, TLT35, that uses a flexible 35-mer linker to couple T20 and T1144, the first and next generation HIV-1 fusion inhibitors, respectively. TLT35, which was expressed in Escherichia coli with good yield, showed low nm activity against HIV-1-mediated cell-cell fusion and infection by laboratory-adapted HIV-1 strains (X4 or R5), including T20-resistant variants and primary HIV-1 isolates of clades A to G and group O (R5 or X4R5). TLT35 was stable in human sera and in peripheral blood mononuclear cell culture and was more resistant to proteolysis than either T20 or T1144 alone. Circular dichroism spectra showed that TLT35 folded into a thermally stable conformation with high α-helical content and T(m) value in aqueous solution. It formed a highly stable complex with gp41 N-terminal heptad repeat peptide and blocked formation of the gp41 six-helix-bundle core. These merits combined with an anticipated low production cost for expression of TLT35 in E. coli make this novel protein-based fusion inhibitor a promising candidate for further development as an anti-HIV-1 microbicide or therapeutic for the prevention and treatment of HIV-1 infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号