首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When stored at low temperature, tomato fruits exhibit chilling injury symptoms, such as rubbery texture and irregular ripening. To identify proteins related to chilling tolerance, we compared two tomato near isogenic lines differing for their texture phenotype at harvest in a fruit-storage trial including two temperatures (4 and 20°C) along several days of conservation. Fruit evolution was followed by assessing fruit color, ethylene emission and texture parameters. The most contrasted samples were submitted to proteomic analysis including two-dimensional electrophoresis and mass spectrometry of protein spots to identify the proteins, whose expression varied according to the genotype or the storage conditions. Unexpectedly, the most firm genotype at harvest was the most sensitive to cold storage. The other genotype exhibited a delay in fruit firmness loss leading to the texture differences observed after 20 days of 4°C storage. The proteome analysis of these contrasted fruits identified 85 proteins whose quantities varied with temperature or genotype. As expected, cold storage decreased the expression of proteins related to maturation process, such as acidic invertase, possibly controlled post-translational regulation of polygalacturonase and up-regulated proteins related to freezing tolerance. However, the study point out proteins involved in the differential resistance to chilling conditions of the two lines. This includes specific isoforms among the large family of small heat shocked proteins, and a set of proteins involved in the defense against of the reticulum endoplasmic stress.  相似文献   

2.
In order to advance in the understanding of CI in pepper fruits, the cell ultrastructure alterations induced by CI and the physiological and metabolic changes have been studied along with the proteomic study. When stored at low temperatures bell pepper (Capsicum annuum) fruits exhibited visual CI symptoms and important alterations within the cell ultrastructure, since peroxisomes and starch grains were not detected and the structure of the chloroplast was seriously damaged in chilled tissues. Physiological and metabolic disorders were also observed in chilled fruits, such as higher ethylene production, increased MDA content, changes in sugar and organic acids and enzymatic activities. The comparative proteomic analysis between control and chilled fruits reveals that the main alterations induced by CI in bell pepper fruits are linked to redox homeostasis and carbohydrate metabolism. Thus, protein abundance in the ascorbate-glutathione cycle is altered and catalase is down-regulated. Key proteins from glycolysis, Calvin cycle and Krebs cycle are also inhibited in chilled fruits. Enolase and GAPDH are revealed as proteins that may play a key role in the development of chilling injury. This study also provides the first evidence at the protein level that cytosolic MDH is involved in abiotic stress.  相似文献   

3.
4.
Low temperature is one of the major abiotic stresses limiting the productivity and the geographical distribution of many important crops. To gain a better understanding of chilling stress responses in rice (Oryza sativa L. cv. Nipponbare), we carried out a comparative proteomic analysis. Three-week-old rice seedlings were treated at 6 degrees C for 6 or 24 h and then recovered for 24 h. Chilling treatment resulted in stress phenotypes of rolling leaves, increased relative electrolyte leakage, and decreased net photosynthetic rate. The temporal changes of total proteins in rice leaves were examined using two-dimensional electrophoresis. Among approximately 1,000 protein spots reproducibly detected on each gel, 31 protein spots were down-regulated, and 65 were up-regulated at least at one time point. Mass spectrometry analysis allowed the identification of 85 differentially expressed proteins, including well known and novel cold-responsive proteins. Several proteins showed enhanced degradation during chilling stress, especially the photosynthetic proteins such as Rubisco large subunit of which 19 fragments were detected. The identified proteins are involved in several processes, i.e. signal transduction, RNA processing, translation, protein processing, redox homeostasis, photosynthesis, photorespiration, and metabolisms of carbon, nitrogen, sulfur, and energy. Gene expression analysis of 44 different proteins by quantitative real time PCR showed that the mRNA level was not correlated well with the protein level. In conclusion, our study provides new insights into chilling stress responses in rice and demonstrates the advantages of proteomic analysis.  相似文献   

5.
Tobacco mosaic virus (TMV) is a widespread plant virus from the genus Tobamovirus that affects tobacco and tomato plants causing a pathology characterised by cell breakage and disorganisation in plant leaves and fruits. In this study we undertook a proteomic approach to investigate the molecular and biochemical mechanisms potentially involved in tomato fruit defence against the viral infection. The comparison of 2-D gels from control and TMV-infected but asymptomatic tomato fruits revealed changes in several proteins. The differential expression of peptidases, endoglucanase, chitinase and proteins participating in the ascorbate-glutathione cycle in infected fruits suggests that pathogenesis-related proteins and antioxidant enzymes may play a role in the protection against TMV infection. TMV coat protein appeared as a prominent spot in 2-D gels from TMV-infected asymptomatic fruits. A Triton X-114 phase-partitioning step of tomato protein extracts favoured the solubilisation of TMV coat protein and the enrichment of two aminopeptidases not present in control fruits. PMF and MS/MS data of the 2-D gel-isolated TMV coat protein is proposed as a powerful analysis method for the simultaneous tobamovirus detection, species determination and strain differentiation in virus-infected fruit commodities.  相似文献   

6.
We previously reported that short exposure of tomato (Lycopersicon esculentum L.) fruits to high temperature protects them from chilling injury. To study the involvement of heat-shock proteins (HSPs) in the acquisition of low-temperature tolerance, we cloned two heat-shock-induced genes that are also expressed at low temperatures. The cloned cDNAs belong to the small HSP group. Sequence analyses of the clones showed perfect homology to the tomato-ripening gene tom66 and to the tomato chloroplastic HSP21 gene tom111. The expression of both genes was induced by high temperature in fruits, flowers, leaves, and stems, but not by low or ambient temperatures or by other stresses such as drought and anaerobic conditions. When the heated fruits were transferred to low temperature, tom66 and tom111 mRNA levels first decreased but were then reinduced. Induction was not observed in nonheated fruits at low temperature. Immunodetection of tom111-encoded protein indicated that this protein is present at low temperatures in the heated fruits. The results of this study show that the expression of tom66 and tom111 is correlated with protection against some, but not all, symptoms of chilling injury.  相似文献   

7.
8.
9.
10.
Chilling stress-induced proteomic changes in rice roots   总被引:4,自引:0,他引:4  
  相似文献   

11.
12.
13.
To evaluate the genotypic variation of salt stress response in tomato, physiological analyses and a proteomic approach have been conducted in parallel on four contrasting tomato genotypes. After a 14 d period of salt stress in hydroponic conditions, the genotypes exhibited different responses in terms of plant growth, particularly root growth, foliar accumulation of Na(+), and foliar K/Na ratio. As a whole, Levovil appeared to be the most tolerant genotype while Cervil was the most sensitive one. Roma and Supermarmande exhibited intermediary behaviours. Among the 1300 protein spots reproducibly detected by two-dimensional electrophoresis, 90 exhibited significant abundance variations between samples and were submitted to mass spectrometry for identification. A common set of proteins (nine spots), up- or down-regulated by salt-stress whatever the genotype, was detected. But the impact of the tomato genotype on the proteome variations was much higher than the salt effect: 33 spots that were not variable with salt stress varied with the genotype. The remaining number of variable spots (48) exhibited combined effects of the genotype and the salt factors, putatively linked to the degrees of genotype tolerance. The carbon metabolism and energy-related proteins were mainly up-regulated by salt stress and exhibited most-tolerant versus most-sensitive abundance variations. Unexpectedly, some antioxidant and defence proteins were also down-regulated, while some proteins putatively involved in osmoprotectant synthesis and cell wall reinforcement were up-regulated by salt stress mainly in tolerant genotypes. The results showed the effect of 14 d stress on the tomato root proteome and underlined significant genotype differences, suggesting the importance of making use of genetic variability.  相似文献   

14.
Oxidative stress is involved in the response of Lycopersicon esculentum fruits (cultivar Micro-Tom) to chilling. Changes in activated oxygen scavenging enzymes, superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11), and glutathione reductase (GR, EC 1.6.4.2) were examined during ripening after postharvest chilling. Also, lipid peroxidation, respiration, and pigment contents were determined. These parameters were affected by chilling, especially the lycopene content and the respiration rate that showed a high value when the fruits were transferred to higher temperatures. CAT activity increased the day after the fruits were re-warmed, while the activity of GR was higher in the chilled than in the non-chilled green fruits. Lipid peroxidation was more evident at the 'pre-chilled' yellow and red fruits. APX and SOD were not affected by previous chilling in ripening fruits. These results indicate that oxidative stress is generated by conservation at 4°C. The antioxidant response of tomato fruit could be mediated by CAT and GR but not by SOD or APX. Moreover, CAT seemed to respond to the increase in the respiration rate.  相似文献   

15.
过量表达叶绿体小分子热激蛋白提高番茄的抗寒性   总被引:17,自引:0,他引:17  
小分子热激蛋白与植物耐寒性提高有相关性,但是没有直接的实验证据能证明小分子热激蛋白的存在增加植物抗寒性.我们克隆了番茄叶绿体(定位)小分子热激蛋白cDNA,并将35SCaMV启动子驱动的番茄叶绿体小分子热激蛋白cDNA植物表达构架导入番茄,测定转基因番茄和未转基因番茄的抗寒性水平.低温处理后,转基因番茄的冷害症状轻于未转基因的番茄;转基因番茄细胞电解质外渗较少、花青素和MDA累积量较低;净光合速率和叶绿体含量高于对照.这些实验结果说明叶绿体小分子热激蛋白的过量表达提高了植物抗寒性.  相似文献   

16.
Blossom-end rot (BER) is a physiopathy that affects tomato fruits causing disorganisation, cell breakage and darkening of the tissues. In this study we describe a tomato fruit protein extraction protocol that includes polyvinyl polypyrrolidone, ascorbic acid and protease inhibitors to promote depletion of phenolics and to avoid protein degradation. The temperature-induced phase separation of plant extracts with nonionic detergent Triton X-114 favours the solubilisation of partially-hydrophobic species in the low-detergent upper phase, making them suitable for further analysis using two-dimensional gel electrophoresis. The analysis of two-dimensional images revealed differences in number and expression levels of several proteins from the control and BER-affected tomato fruits. Although the appearance of BER in tomato is primarily attributed to a lack of calcium supply to fruits, very little is known about the molecular and biochemical mechanisms involved. The identification of differential proteins from affected fruits with matrix-assisted laser desorption/ionisation-time of flight and peptide mass fingerprinting analysis revealed the induction of proteins participating in antioxidant processes (ascorbate-glutathione cycle) and the pentose phosphate pathway. We suggest that these two biochemical pathways, acting as reactive oxygen species scavengers in BER-affected fruits, restrain the spread of the blackening to the whole fruit.  相似文献   

17.
18.
Proteomic changes induced by Cd have been described in plants in different scenarios. However, there has been no proteomic study on Cd toxicity, including any low Cd-accumulating species. Here, we investigate the response of a low Cd-accumulating species, Solanum torvum, to Cd toxicity at the root proteomic level using two-dimensional gel electrophoresis (2-DGE). The root 2-DGE map consisted of at least 927 reproducible protein spots, of which 45 were classified as differentially expressed proteins based on three replicated separations. MALDI-TOF MS analysis identified 19 of these spots, and MALDI-TOF/TOF MS analysis identified 8 of the spots. The eight proteins identified were two S-adenosylmethionine (SAM) synthetases, actin, an ATP synthase subunit, two tubulin proteins, alcohol dehydrogenase (ADH), and 14-3-3 protein 4. These proteins are involved in phytohormone synthesis, defense responses, energy metabolism, and cytoskeleton construction. Thus, our proteomic analysis revealed that Cd stress promotes an increase in the abundance of proteins involved in antioxidant defenses and anti-stress protection.  相似文献   

19.
20.
Nanjo Y  Nouri MZ  Komatsu S 《Phytochemistry》2011,72(10):1263-1272
Quantitative proteomics is one of the analytical approaches used to clarify crop responses to stress conditions. Recent remarkable advances in proteomics technologies allow for the identification of a wider range of proteins than was previously possible. Current proteomic methods fall into roughly two categories: gel-based quantification methods, including conventional two-dimensional gel electrophoresis and two-dimensional fluorescence difference gel electrophoresis, and MS-based quantification methods consists of label-based and label-free protein quantification approaches. Although MS-based quantification methods have become mainstream in recent years, gel-based quantification methods are still useful for proteomic analyses. Previous studies examining crop responses to stress conditions reveal that each method has both advantages and disadvantages in regard to protein quantification in comparative proteomic analyses. Furthermore, one proteomics approach cannot be fully substituted by another technique. In this review, we discuss and highlight the basis and applications of quantitative proteomic analysis approaches in crop seedlings in response to flooding and osmotic stress as two environmental stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号