首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study was to examine the effect of lipopolysaccharide (LPS) on the levels of prostaglandin E(2) (PGE(2)) in the perfusates of the fetal and the maternal compartments of perfused human term placental tissue. Term placentas were perfused for 10h in the absence [control, (n=4)] and presence of LPS [LPS=1 microg/kg perfused placental tissue, (n=4)] in the maternal reservoir. Perfusate samples from the fetal and the maternal circulations were collected every 30 min and examined for PGE(2) levels by radio-immunoassay. PGE(2) levels in the fetal circulation were gradually increased reaching significant peak value of 479+/-159 pg/ml, as compared to PGE(2) levels in the maternal circulation (140+/-146 pg/ml) (p<0.05). After 10 hours of perfusion with control medium, PGE(2) levels in the maternal circulation (347+/-144 pg/ml) were significantly higher as compared to the fetal circulation (150+/-57 pg/ml) (p<0.05). In presence of LPS, PGE(2) levels in the fetal circulation increased reaching a peak value of 1028+/-663 pg/ml after 240 min of perfusion. The levels of PGE(2) in the control group after 240 min of perfusion were significantly lower (156+/-77 pg/ml) (p<0.05). No significant differences were detected in the levels of PGE(2) in the perfusate of the maternal compartment in presence of LPS, as compared to control. Our results suggest that the placenta may play an important role in maintaining high levels of PGE(2) in the fetal circulation and low PGE(2) levels in the maternal circulation during normal pregnancy. Moreover, placental PGE(2) release into the fetal and the maternal circulations may be differently affected in presence of intra-uterine infection/inflammation.  相似文献   

2.
When carbacyclin (5E-6a-carba-prostaglandin I2) was added to the maternal afferent circulation of in vitro perfused placentae from normal term pregnancies, relatively little carbacyclin was found in either the maternal or fetal efferent circulations. When carbacyclin was added to the perfusate at 1.0 microM, the peak level in the maternal effluent was only 0.06 microM and in the fetal effluent, 0.026 microM. When infused at 10 microM, 0.77 microM carbacyclin was measured in the maternal effluent and 0.13 in the fetal effluent. These findings demonstrate that carbacyclin is transferred across the placenta from the maternal side to the fetal, but that the net transfer is small. The assay procedure employed HPLC resolution, followed by capillary gas chromatography and selected ion monitoring using PGB as an internal standard. The low levels of carbacyclin detected in the effluents did not result from poor recovery in the analyses. When carbacyclin was added to maternal or fetal effluents at 1 microM, the recovery averaged 85.4 +/- 14.1% (SD); at 10 microM recovery averaged 97.3 +/- 4.2%. Much of the loss of carbacyclin on passage through placental circulation resulted from metabolism. Extracts of both fetal and maternal effluents from placenta perfused with carbacyclin contained a component which on reverse phase HPLC appeared less polar than carbacyclin. When analyzed by GC/MS as the methyl ester-trimethylsilyl ether, this component had a mass spectrum expected for 15-dehydro-carbacyclin. When the presumed metabolite was further converted to the methoxime, the mass spectrum was identical to published spectra for that derivative of 15-dehydro-carbacyclin. When extracts of fetal effluents were analyzed for 15-dehydro-carbacyclin metabolite as well as carbacyclin, it appeared that the metabolite accounted for the majority of the carbacyclin recovered. Most of the metabolite was apparently not formed in the fetal circulation, since when carbacyclin was added to the fetal afferent circulation, little 15-dehydro-carbacyclin was observed in either efferent fluid, and most of the perfused carbacyclin was recovered unaltered in the fetal effluent.  相似文献   

3.
Conversion of tritiated arachidonic acid (AA) into metabolites of the cyclo- and lipoxygenase pathways by bovine fetal placental tissue (200 mg) and fetal plus maternal placental tissue (400 mg) of Days 255, 265, 275 of gestation and at parturition (n = 5) during a 30 min incubation was measured using reverse-phase high pressure liquid chromatography. Fetal placental tissue produced 13,14-dihydro-15-keto-prostaglandin E2 (PGEM) as the major metabolite, the synthesis of which increased from Day 265 to Day 275 and parturition by 150% and 475%, respectively. In tissues collected at parturition, PGE2 synthesis was also detected. On Day 275 and at parturition fetal placental tissue synthesized the metabolite 12-hydroxyheptadecatrienoic acid (HHT), and throughout the experimental period the lipoxygenase product 15-HETE was detected with synthesis rates increasing over time of gestation. In addition, an unidentified metabolite was regularly found in the radiochromatograms which eluted at 1 h and 1 min (U101), between HHT and 15-HETE. The synthesis of this metabolite decreased as pregnancy progressed. Furthermore, various other polar and nonpolar metabolites pooled under the heading UNID were eluted, the production of which increased over time of gestation. The presence of maternal placental tissue did not influence the synthesis of PGEM, 15-HETE and U101, but the production of HHT was decreased when maternal tissue was present. Also, as pregnancy progressed, maternal placental tissue seemed to contribute to the pool of unidentified metabolites. In conclusion, fetal placental tissue seems to be the major source of the AA metabolites when compared with maternal placental tissue, and AA metabolism by bovine placental tissue is markedly increased throughout the last month of pregnancy, suggesting a role for AA metabolites in mechanisms controlling parturition.  相似文献   

4.
The possibility that histamine can affect both the vascular resistance and permeability of the isolated dually perfused guinea-pig placenta has been investigated. Change from control to histamine (2.7 x 10(-4)M) perfusion of the fetal circulation elicited a significant (P less than 0.01, paired 't' test) maximum increase of 1.17 +/- 0.14 (SEM) kPa in fetal perfusion pressure 3 min later, representing a 33% rise. This vasoconstriction was completely blocked by the H1 antagonist diphenhydramine (10(-4)M) but not by the H2 receptor antagonist cimetidine (10(-4)M). In the same experiments the clearance (calculated as the ratio of fetal to maternal perfusate concentration times fetal flow-rate) of a macromolecular tracer, anionic horseradish peroxidase from the maternal to fetal circulation was significantly increased (P less than 0.05, paired 't' test) when steady state (15-20 min of perfusion) values were compared, from 5.9 +/- 1.7 (SEM) microliter min-1 placenta-1 to 12.9 +/- 3.5 (SEM) microliter min-1 placenta-1 (n = 20) for control and histamine respectively. By contrast the steady state clearance (calculated as before) of a smaller hydrophilic tracer, 51Cr-EDTA, was not significantly affected, being 587 +/- 59 (SEM) microliter min-1 placenta-1 in control and 587 +/- 55 (SEM) microliter min-1 placenta-1 (n = 20) with histamine perfusion. When histamine was perfused simultaneously with an H1 or H2 antagonist there was no change in anionic horseradish peroxidase clearance. Electron microscopy of placentas perfused with histamine failed to reveal any obvious alteration in morphology or anionic horseradish peroxidase localisation as compared to placenta perfused without histamine. This study thus demonstrates that histamine may cause changes in the macromolecular permeability of the placenta as well as vasoconstriction of the placental vasculature.  相似文献   

5.
Although zinc is essential for normal fetal growth and development, little is known about factors that influence its transfer across the placenta. The in situ perfused guinea pig placenta model was used to study the influence of the zinc concentration of fetal circulation on maternofetal placental zinc transfer. A placenta of the anaesthetized sow was perfused (on the fetal side) with a physiological perfusate via the umbilical vessels, with the fetus excluded. The sow was infused intravenously with 65zinc as a tracer of placental Zn clearance, and with antipyrine as an indirect indicator of maternal placental blood flow. Maternal plasma and placental effluent samples collected at intervals were counted for 65zinc by gamma counter, and the absorbance of nitrosated antipyrine was measured at 350 nm. Varying the mean zinc concentration in the perfusate from 0.176 to 1.87 mg/L had no effect on relative zinc clearance calculated as zinc clearance/antipyrine clearance (mean +/- SEM; 0.085 +/- 0.010 vs. 0.114 +/- 0.018; n = 6; p greater than 0.05). The results suggest that short-term changes in fetal zinc status do not influence placental zinc transfer.  相似文献   

6.
Despite some functional impairment of the newborn's T-cell immune system, most infants survive the intrauterine and perinatal period without succumbing to infection or maternal lymphocyte engraftment. The placenta may play a crucial role in protecting the infant from microbial and histocompatibility antigens. Accordingly, we studied phenotypic and functional capacities of placental cells. Placentas were obtained from uncomplicated pregnancies. Matched cord blood and maternal peripheral blood were also obtained in many instances. Fresh minced placental tissue was washed and digested with collagenase and DNase and mononuclear cells were obtained by density gradient centrifugation. The average yield was 10(6) cells/g of tissue with greater than 80% viability. Chromosome analysis of five placental preparations indicated that these cells were of fetal rather than maternal origin. The isolated placental cells consisted of trophoblasts, lymphocytes (74 +/- 3%), monocytes (16 +/- 3%), and granulocytes (8 +/- 2%). E-rosette forming cells (T cells) made up 65 +/- 2% and surface membrane immunoglobulin positive cells made up 8 +/- 1% of the placental mononuclear cells. Fluorescent activated analysis of the mononuclear cells indicated less Leu 4-positive cells (Pan-T) 43 +/- 3%, and less Leu 3-positive (T-helper cells) (25 +/- 2%), than cord and maternal cell preparations. Leu-2, DR, and B1 positive cells were similar to those in cord and maternal blood. Leu 7 and especially Leu 11 positive cells, markers for natural killer cells, were abundant in placental cells, making up 4 +/- 0.7% and 20 +/- 3%, respectively. The Leu 7/Leu 11 ratio of the placental cells was different from either the maternal or cord blood cells. Natural killer activity of placental cells against a K562 natural killer target was low, despite the abundance of cells with NK markers. The K562 activity was low in the placental cells, similar to the low NK activity of maternal and cord cells. Molt 4f killer activity was near normal. Lectin-dependent cytotoxicity using an EL-4 cell target plus PHA was low in placentas, compared to normal, maternal, or cord cell cytotoxicity. Matched samples indicated that LDCC activity was mother greater than cord greater than placenta. Antibody-dependent cytotoxicity (Raji target) of placental cells showed low activity, and again the paired studies indicated that normal controls greater than maternal greater than cord greater than placenta cytotoxicity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
In early ovine fetal development, the placenta grows more rapidly than the fetus so that at mid-gestation the aggregate weight of placental cotyledons exceeds fetal weight. The purpose of this study was to compare two separate methods of measuring uterine blood flow and glucose and oxygen uptakes in seven mid-gestation ewes, each carrying a single fetus. Uterine blood flow to both uterine horns was measured by microsphere and by tritiated water steady-state diffusion methodology. Calculations of tritiated water blood flows and oxygen and glucose uptakes were based on measurements of arteriovenous concentration differences across each uterine horn. The distribution of blood flow and oxygen uptake between the two uterine horns was strongly correlated with placental mass distribution. The two methods gave comparable results for uterine blood flow (457 +/- 35 vs 476 +/- 35 ml/min), oxygen uptake (457 +/- 35 vs 476 +/- 35 mumol/min), and glucose uptake (63 +/- 8 vs 64 +/- 6 mumol/min). Uterine blood flow was approximately 38% of the late gestation value and 56.1 +/- 1 times higher than umbilical blood flow. Uteroplacental oxygen consumption was about 58% of late gestation measurements and 3.9 +/- 0.5 times higher than fetal oxygen uptake. We confirm that the large placental mass of mid-gestation is associated with high levels of maternal placental blood flow and placental oxidative metabolism.  相似文献   

8.
1.) Total renin, active renin, prorenin, angiotensin II, estradiol and progesterone were measured in maternal, placental and fetal blood and in trophoblastic and uterine tissues of the guinea pig. Furthermore, membrane angiotensin II receptors were measured in trophoblastic tissues. 2.) Blood and tissue concentrations of total renin, active renin, angiotensin II and steroids are shown to increase with gestational age. At the full term of pregnancy (70th post-coital day), tissue concentrations of total renin in chorion (23,900 +/- 2,752 ng/g of tissue/h), maternal placenta (14,210 +/- 1,131), fetal placenta (12,475 +/- 927) and uterus (7,677 +/- 798) are 100 time higher than those observed in placental, fetal and maternal blood. Distribution of blood and tissue prorenin (inactive renin) is similar to that found for total renin. Active renin/Total renin ratio reaches 1% in uterine, placental and chorion tissues and 9.3 +/- 1.0% in maternal, placental and fetal blood. 3.) Angiotensin II levels in systemic maternal blood (690 +/- 99 pg/ml) and in uterine blood (467 +/- 84) are higher than those found in placental blood (266 +/- 39) and in different trophoblastic tissues (between 200 and 400 pg/g). Angiotensin II receptor concentrations are highest in chorion. 4.) Regarding the steroid hormones, it is noted that placental and maternal blood contain more progesterone than trophoblastic tissues. The highest concentrations of estradiol are found in chorion tissue and uterine blood. 5.) A positive correlation is observed between angiotensin II and estradiol in uterine blood (r = 0.69, P less than 0.01) and in chorion (r = 0.71, P less than 0.01). These findings indicate that angiotensin II and estradiol could, by their interactions, play an important role in the physiology of pregnancy.  相似文献   

9.
To explore whether the placenta contributes to the lipoprotein metabolism of pregnant women, we took advantage of the fact that placental proteins are encoded from the fetal genome and examined the associations between lipids of 525 pregnant women and the presence, in their newborns, of genetic polymorphisms of LPL and apolipoprotein E (APOE), two genes expressed in placenta. After adjustment for maternal polymorphisms, newborn LPL*S447X was associated with lower triglycerides (-21 +/- 9 mg/dl), lower LDL-cholesterol (LDL-C; -12 +/- 5 mg/dl), lower apoB (-14 +/- 4 mg/dl), higher HDL-C (5 +/- 2 mg/dl), and higher apoA-I (9 +/- 4 mg/dl) in their mothers; newborn LPL*N291S was associated with higher maternal triglycerides (114 +/- 31 mg/dl); and newborn APOE*E2 (compared to E3E3) was associated with higher maternal LDL-C (14 +/- 6 mg/dl) and higher maternal apoB (14 +/- 5 mg/dl). These associations (all P < 0.05) were independent of polymorphisms carried by the mothers and of lipid concentrations in newborns and were similar in amplitude to the associations between maternal polymorphisms and maternal lipids. Such findings support the active role of placental LPL and APOE in the metabolism of maternal lipoproteins and suggest that fetal genes may modulate the risk for problems related to maternal dyslipidemia (preeclampsia, pancreatitis, and future cardiovascular disease).  相似文献   

10.
The effects of insulin, prostaglandin E1 (PGE1) and uptake inhibitors on unidirectional D-glucose influx at brush border (maternal) and basal (fetal) sides of the guinea-pig syncytotrophoblast were investigated in the intact, perfused guinea-pig placenta by rapid, paired-tracer dilution. Experiments were performed in either an in situ preparation artificially perfused through the umbilical vessels (intact maternal circulation) or in the fully isolated dually-perfused placenta in which both interfaces were studied simultaneously. Kinetic characterization of unidirectional D-glucose influx gave apparent Km values (mean +/- SEM) at maternal and fetal sides of 70 +/- 6 and 87 +/- 16 mM respectively; corresponding Vmax values were 53 +/- 3 and 82 +/- 6 mumol min-1g-1. At the fetal side (singly-perfused placenta) cytochalasin B (50 microM), ethylidene-D-glucose (100 mM) and PGE1 (1 microM) partially inhibited D-glucose uptake whereas cortisol (50 microM) and progesterone (100 microM) had no effect. Abolition of the sodium gradient across the fetal interface did not modulate the kinetics of influx. In the presence of 150 mu units ml-1 insulin (dually-perfused placenta), unidirectional uptake into the trophoblast and transplacental D-[3H]glucose transfer were unaltered. In contrast, prostaglandin E1 (1 microM) markedly reduced the Km and Vmax for D-glucose at both interfaces and the inhibitory effect was reflected in a reduction in specific transplacental D-glucose transfer. Further experiments showed that the isolated placenta releases prostaglandins (PGE; PGF2 alpha) into both circulations. Bilateral insulin perfusion did not affect either lactate release by the placenta or rapid metabolism of D-[14C]glucose to [3H]lactate (usually less than 10% effluent [14C]lactate in 5 min). An asymmetric degradation of exogenous insulin was observed in the dually-perfused placenta: uterine venous samples contained 24 +/- 7 microunits ml-1 immunoreactive insulin when compared to the arterial concentration (151 +/- 3 microU ml-1 perfusate) while no change was measureable in the fetal circulation within the same time period (152 +/- 5 microU ml-1). This asymmetry was confirmed in experiments employing [125I]insulin. These results demonstrate that glucose transport in the intact guinea-pig placenta occurs by a sodium-independent, cytochalasin B-inhibitable system which is insulin-insensitive. Prostaglandin E1 appeared to be a potent transport inhibitor which suggests that prostaglandins may be involved in the 'down' regulation of placental glucose transport in vivo.  相似文献   

11.
IL-10 is anti-inflammatory cytokine that is involved in the regulation of the pregnancy process. We examined the capacity of fetal and maternal placental tissues from human term placentas, to produce IL-10, in the presence and absence of LPS. The levels of IL-10 were examined (by ELISA and immunohistochemical staining) in the fetal and maternal tissues of human placentas after 10 hours of perfusion, in the presence or absence of lipopolysaccharide (LPS; 1 microg/k"g perfused tissue). We could detect IL-10 in amnion (A; 13.91+/-11.35 pg/ml) and chorion (CH; 7.85 +/- 6.38 pg/ml) tissue homogenates, and in the homogenates of three different sites of the placental tissue compartment (subchorionic placenta (SubCH); 7.39 +/- 4.39 pg/ml, mid-placenta (MidPL); 8.9 +/- 4.73 pg/ml and decidua (Decid); 16.48 + 11.86 pg/ml). Immunohistochemical studies showed that IL-10 was localized in the epithelial cells of the amnion, and in the fibroblasts and macrophages of the chorion. In the placenta and mid-placental sites, IL-10 is localized mainly in cytotrophoblasts and syncytotrophoblasts. The presence of LPS in the perfusion media of the placentas for 10 hours, did not significantly affect the capacity of the fetal and maternal tissues to produce IL-10. Thus, our results may indicate the involvement of the fetal compartment in the down-regulation of the cell-mediated response of the maternal compartment against the fetus, by producing IL-10 under physiological conditions. Infection/inflammation agents such as LPS did not affect the expression levels of IL-10 in the placenta.  相似文献   

12.
Vertical transmission of the human immunodeficiency virus 1 (HIV-1) is reduced from approximately 25% to approximately 7% as a result of 3'-azido-3'-deoxythymidine (AZT) therapy given during pregnancy; however, the consequences of transplacental AZT exposure to the fetus remain unknown. To address the extent and kinetics of AZT transfer across the human placenta, perfusion studies have been performed with fresh uninfected human placentas perfused with 0.5, 1. 0 and 5.0 mg AZT/ml for 2 h using a dual recirculating single cotyledon perfusion apparatus [T.I. Ala-Kokko, P. Pienimaki, R. Herva, A.I. Hollmen, O. Pelkonen, K. V?h?kangas, Transfer of lidocaine and bupivacaine across the isolated perfused human placenta, Pharmacol. Toxicol. 77 (1995) 142-148]. For two placentas, samples of perfusion effluent were taken every 15 min from the maternal and fetal sides of the apparatus and AZT levels were determined by AZT radioimmunoassay (RIA). At the end of the perfusion, AZT-DNA incorporation into placental DNA was determined by AZT-RIA. The concentration of AZT in the fetal perfusate increased with time, along with a concomitant slow decrease in the concentration of AZT in the maternal perfusates. For three different placentas, at 2 h after the start of perfusion, AZT-DNA incorporation values (molecules of AZT/10(6) nucleotides) were 11.8 for the 0.5 mg AZT/ml perfusate, 13.7 for the 1.0 mg AZT/ml perfusion, and 42.0 for the 5 mg AZT/ml perfusion. An additional placenta perfused with 1 mg AZT/ml did not have detectable values of AZT incorporated into DNA (data not shown). The data show that AZT crosses the human placenta and becomes rapidly incorporated into DNA of placental tissue in a dose-dependent fashion, suggesting that even short exposures to this drug might induce fetal genotoxicity and might also inhibit maternal-fetal viral transmission.  相似文献   

13.
Summary Isolated lobules of normal term human placentas were perfused using two different procedures. In the first more conventional system, open-circuit perfusion of both the maternal and the fetal circulations with Earle's solution containing dextran was established and maintained for either 30 min or 1 h. In the second series of experiments both circulations were perfused in separate closed circuits with a mixture of fresh autologous fetal blood and Earle's solution for 0, 1, 2 or 3 h. In both series the lobule was then fixed by perfusion through the fetal circulation.Light and electron-microscopic examination of a set of tissue samples from each perfused lobule showed substantial differences between the effects of these two types of perfusion procedure. Tissue from lobules perfused by the open-circuit blood-free procedure showed patchy but severe cell swelling and vacuolation of the trophoblast after only one hour's perfusion. Particularly striking was swelling and disruption of a large proportion of the mitochondria in all placental cell types. By contrast, placental tissue from the closed-circuit perfusion with blood-containing medium showed little change over a period of two hours, while after three hours it showed oedema and microvillous damage, but no sign of cell swelling and little mitochondrial damage.It is concluded that the viability of the perfused human placental lobule depends on the type of perfusate used, and that the use of a fetal blood-enriched perfusate is of considerable value in maintenance of the preparation as assessed by structural criteria.  相似文献   

14.
In an effort to examine the effects of maternal exercise on the fetus we measured maternal and fetal temperatures and blood gases and calculated uterine O2 consumption in response to three different treadmill exercise regimens in 12 chronically catheterized near-term sheep. We also measured fetal catecholamine concentrations, heart rate, blood pressure, cardiac output, blood flow distribution, blood volume, and placental diffusing capacity. Maternal and fetal temperatures increased a mean maximum of 1.5 +/- 0.5 (SE) and 1.3 +/- 0.1 degrees C, respectively. We corrected maternal and fetal blood gas values for the temperatures in vivo. Maternal arterial partial pressure of O2 (PO2), near exhaustion during prolonged (40 min) exercise at 70% maximal O2 consumption, increased 13% to a maximum of 116.7 +/- 4.0 Torr, whereas partial pressure of CO2 (PCO2) decreased by 28% to 27.6 +/- 2.2 Torr. Fetal arterial PO2 decreased 11% to a minimum of 23.2 +/- 1.6 Torr, O2 content by 26% to 4.3 +/- 0.6 ml X dl -1, PCO2 by 8% to 49.6 +/- 3.2 Torr, but pH did not change significantly. Recovery was virtually complete within 20 min. During exercise total uterine O2 consumption was maintained despite the reduction in uterine blood flow because of hemoconcentration and increased O2 extraction. The decrease of 3 Torr in fetal arterial PO2 and 1.5 ml X dl -1 in O2 content did not result in major cardiovascular changes or catecholamine release. These findings suggest that maternal exercise does not represent a major stressful or hypoxic event to the fetus.  相似文献   

15.
20-Hydroxyeicosatetraenoic acid (20-HETE) is a cytochrome P-450 4A (CYP4A) metabolite of arachidonic acid (AA) in human and rabbit lung microsomes and is a dilator of isolated human pulmonary arteries (PA). However, little is known regarding the contribution of P-450 metabolites to pulmonary vascular tone. We examined 1) the effect of two mechanistically distinct omega- and omega1-hydroxylase inhibitors on perfusion pressures in isolated rabbit lungs ventilated with normoxic or hypoxic gases, 2) changes in rabbit PA ring tone elicited by 20-HETE or omega- and omega1-hydroxylase inhibitors, and 3) expression of CYP4A protein in lung tissue. A modest increase in perfusion pressure (55 +/- 11% above normoxic conditions) was observed in isolated perfused lungs during ventilation with hypoxic gas (FI(O(2)) = 0.05). Inhibitors of 20-HETE synthesis, 17-oxydecanoic acid (17-ODYA) or N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS), increased baseline perfusion pressure above that of vehicle and amplified hypoxia-induced increases in perfusion pressures by 92 +/- 11% and 105 +/- 11% over baseline pressures, respectively. 20-HETE relaxed phenylephrine (PE)-constricted PA rings. Treatment with 17-ODYA enhanced PE-induced contraction of PA rings, consistent with inhibition of a product that promotes arterial relaxation, whereas 6-(20-propargyloxyphenyl)hexanoic acid (PPOH), an epoxygenase inhibitor, blunted contraction to PE. Conversion of AA into 20-HETE was blocked by 17-ODYA, DDMS, and hypoxia. CYP4A immunospecific protein confirms expression of CYP4A in male rabbit lung tissue. Our data suggest that endogenously produced 20-HETE could modify rabbit pulmonary vascular tone, particularly under hypoxic conditions.  相似文献   

16.
A simple, sensitive HPLC method using fluorescence detection was developed for determination of adenosine in fetal venous perfusates of dual-perfused cotyledons from human term placentas. Maternal and fetal circuits of in vitro placental cotyledons were perfused with physiological salt solution containing dextrose and dextran (Earle's medium). Conditions were established for optimal formation of fluorescent 1,N6-ethenoadenosine from adenosine and chloroacetaldehyde in Earle's medium and for optimal resolution of 1,N6-ethenoadenosine by reversed-phase HPLC of the reaction mixture. The yield of 1,N6-ethenoadenosine was enhanced by dilution and acidification of the sample matrix. Perfusate samples in autosampler vials were diluted 40% with water and reacted with chloroacetaldehyde for 40 min at 100 degrees C; replicate 100-microliters injections were made automatically from each reaction mixture for HPLC analysis with fluorescence detection on a column packed with 3 microns octadecylsilica (Hypersil). Calibration curves were prepared similarly from 4-100 nM adenosine in Earle's medium. Alternatively, perfusate samples were diluted twofold with dilute phosphoric acid to give a final pH of 5.4 before reaction with chloroacetaldehyde, and replicate 50-microliters injections were made automatically for HPLC; calibration curves were prepared from 2-400 nM adenosine in Earle's medium. 1,N6-Ethenoadenosine was well resolved from Earle's-derived artifactual peaks on chromatography with either a linear or a concave gradient of methanol in ammonium phosphate buffer. Total run times were 15 and 19 min, respectively. Sensitivity of measurement of adenosine was 2-4 nM. Derivatization of adenosine using the acidified reaction mixture gave a limit of detection of 100 fmol of adenosine per injection. Application of the method to analysis of adenosine in fetal venous perfusates of eight dual-perfused cotyledons, each from a different placenta, gave a range of 3.5-52 nM adenosine. Ischemia, imposed by cessation of maternal perfusion, caused a two- to sixfold increase in fetal venous perfusate adenosine concomitant with an increase in fetoplacental perfusion pressure; perfusion pressure and perfusate adenosine returned to baseline levels on reperfusion of the maternal circuit. This facile method of determination of perfusate adenosine should allow investigation of the role of placental adenosine release in regulation of fetoplacental vascular resistance and should be applicable to study of adenosine released by other isolated perfused organs.  相似文献   

17.
Rat placental lactogen-II (rPL-II) and growth hormone (rGH) in maternal and fetal serum, amniotic fluid, and placental tissue were measured by a homologous radioimmunoassay during the last half of pregnancy. rPL-II appeared first in maternal circulation and the placental tissue on day 11 of pregnancy. The maternal serum rPL-II concentration increased progressively and reached the peak value (684 +/- 76 ng/ml) on day 19, and declined thereafter up to term. rPL-II content in the tissue had a similar pattern to the maternal serum profile of rPL-II, while its concentration in the tissue increased dramatically on day 12 and remained high until day 19. Fetal serum rPL-II was detected on days 17 and 18, though its concentration was much lower (ranged between 3-10 ng/ml) than that of maternal serum. rPL-II in amniotic fluid was also detectable only on days 12-14 of pregnancy, and the peak value on day 13 was 22% of the maternal serum rPL-II concentration. The rGH concentration increased gradually as pregnancy advanced with a decline on the day before parturition. Although rGH in fetal serum increased on day 20 with a decline on the following day, it was slightly detectable in amniotic fluid on the last two days of pregnancy. The molecular profile of rPL-II in amniotic fluid and maternal serum of day 13 pregnant rats were examined by Western blotting. Anti-rPL-II serum detected two proteins with molecular weights (mol wt) of 19.5K and 20.5K in amniotic fluid and one protein with a mol wt of 20.5K in maternal serum under nonreducing conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The placenta provides a maternal-fetal exchange interface that maximizes the diffusion of gases, nutrients, and wastes. However, the placenta also may permit diffusion of lipid-soluble steroid hormones that influence processes such as sex-specific fetal development and maternal pregnancy maintenance. In mammals, placental steroid metabolism contributes to regulation of maternal and fetal hormone levels. Such mechanisms may be less highly developed in species that have recently evolved placentation, such as many reptiles. We therefore chose to investigate placental metabolism of steroids in the viviparous lizard Sceloporus jarrovi. In vitro tissue incubations tested the abilities of the chorioallantoic placenta to clear progesterone and corticosterone by converting them to other metabolites and to synthesize progesterone. Placental tissue rapidly cleared progesterone and corticosterone added to the incubation media, indicating that the tissue had converted the steroids to other products. Placental tissue also synthesized substantial concentrations of progesterone from the prohormone pregnenolone. Thus, even in a species with a simple, recently evolved placenta, steroid metabolism appears to be highly developed and could be critical for regulation of maternal and fetal hormone levels. This finding suggests that placental hormone metabolism may be critical to the successful evolution of placentation.  相似文献   

19.
The purpose of this study was to assess the influence of regular voluntary exercise in pregnant normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats on 1) uteroplacental perfusion and mean arterial pressure in the resting conscious condition and 2) fetal number, fetal weight, and number of fetal resorptions. WKYs and SHRs were randomly assigned to standard cages [CWKY (n = 10); CSHR (n = 6)] or cages with activity wheels [EWKY (n = 7); ESHR (n = 8)]. EWKYs and ESHRs exercised for 12 wk, and then all rats were bred and experiments were conducted on gestational day 17. Resting blood flow (microspheres), heart rate (HR), and mean arterial pressure (Pa) were measured. No significant difference was found in Pa, HR, uterine blood flow (ESHRs 52 +/- 8 ml.min-1.100 g-1; CSHRs 28 +/- 6 ml.min-1.100 g-1), or maternal placental blood flow (ESHRs, 122 +/- 31 ml.min-1.100 g-1; CSHRs 78 +/- 21 ml.min-1.100 g-1) among the groups. Exercise altered the relationship between maternal placental and uterine blood flow and Pa in the SHR; SHRs with lower Pa maintained higher placental and uterine blood flow after training. Before gestation ESHRs ran on average more kilometers per week than EWKYs (43 +/- 3 vs. 34 +/- 4), but during gestation ESHRs averaged fewer kilometers per week than EWKYs (16 +/- 4 vs. 22 +/- 4). Succinate dehydrogenase activity was higher in the white vastus lateralis (1.02 +/- 0.2 mumol cytochrome c reduced.min-1.g wet wt-1) and vastus intermedius (3.1 +/- 0.5 mumol cytochrome c reduced.min-1.g wet wt-1) muscles of ESHRs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Limiting maternal nutrient intake during ovine adolescent pregnancy progressively depleted maternal body reserves, impaired fetal nutrient supply, and slowed fetal soft tissue growth. The present study examined placental growth, angiogenic gene expression, and vascular development in this undernourished adolescent model at Days 90 and 130 of gestation. Singleton pregnancies were established, and ewes were offered an optimal control (C; n = 14) or low (L [0.7 x C]; n = 21) dietary intake. Seven ewes receiving L intakes were switched to C intakes on Day 90 of gestation (L-C). Fetal body weight (P < 0.01) and glucose concentrations (P < 0.03) were reduced in L versus C pregnancies by Day 130, whereas L-C group values were intermediate. Placental cellular proliferation, gross morphology, and mass were independent of maternal nutrition at both Day 90 and 130. In contrast, capillary area density in the maternal caruncular portion of the placentome was reduced by 20% (P < 0.001) at both stages of gestation in L compared with C groups. Caruncular capillary area density was equivalent in the L and L-C groups at Day 130. Placental mRNA expression of five key angiogenic ligands or receptors increased (P < 0.001) between Days 90 and 130 of gestation. VEGFA mRNA expression was higher (P < 0.04) in L compared with C and L-C pregnancies at Day 130, but otherwise gene expression of the remaining angiogenic factors and receptors analyzed was unaffected by maternal intake. Undernourishing the pregnant adolescent dam restricts fetal growth independently of changes in placental mass. Alterations in maternal placental vascular development may, however, play a role in mediating the previously reported reduction in maternal and hence fetal nutrient supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号