首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Matrix metalloproteinases (MMPs) are secreted endopeptidases that play an essential role in remodeling the extracellular matrix (ECM). MMPs are primarily active during development, when the majority of ECM remodeling events occurs. In adults, elevated MMP activity has been observed in many pathological conditions such as cancer and osteoarthritis. The proteolytic activity of MMPs is controlled by their natural inhibitors - the tissue inhibitor of metalloproteinases (TIMPs). In addition to blocking MMP-mediated proteolysis, TIMPs have a number of MMP-independent functions including binding to cell surface proteins thereby stimulating signaling cascades. TIMP-2, the most studied member of the family, can both inhibit and activate MMPs directly, as well as inhibit MMP activity indirectly by upregulating expression of RECK, a membrane anchored MMP regulator. While TIMP-2 has been shown to play important roles in breast cancer, we describe how the MMP-independent effects of TIMP-2 can modulate the invasiveness of MCF-7, T47D and MDA-MB-231 breast cancer cells. Using an ALA + TIMP-2 mutant which is devoid of MMP inhibition, but still capable of initiating specific cell signaling cascades, we show that TIMP-2 can differentially affect MMP activity and cellular invasiveness in both an MMP dependent and independent manner. More specifically, MMP activity and invasiveness is increased with the addition of exogenous TIMP-2 in poorly invasive cell lines whereas it is decreased in highly invasive cells lines (MDA-MB-231). Conversely, the addition of ALA + TIMP-2 resulted in decreased invasiveness regardless of cell line.  相似文献   

2.
Matrix metalloproteinases (MMPs) and their endogenous inhibitors TIMPs (tissue inhibitors of MMPs), are two protein families that work together to remodel the extracellular matrix (ECM). TIMPs serve not only to inhibit MMP activity, but also aid in the activation of MMPs that are secreted as inactive zymogens. Xenopus laevis metamorphosis is an ideal model for studying MMP and TIMP expression levels because all tissues are remodeled under the control of one molecule, thyroid hormone. Here, using RT-PCR analysis, we examine the metamorphic RNA levels of two membrane-type MMPs (MT1-MMP, MT3-MMP), two TIMPs (TIMP-2, TIMP-3) and a potent gelatinase (Gel-A) that can be activated by the combinatory activity of a MT-MMP and a TIMP. In the metamorphic tail and intestine the RNA levels of TIMP-2 and MT1-MMP mirror each other, and closely resemble that of Gel-A as all three are elevated during periods of cell death and proliferation. Conversely, MT3-MMP and TIMP-3 do not have similar RNA level patterns nor do they mimic the RNA levels of the other genes examined. Intriguingly, TIMP-3, which has been shown to have anti-apoptotic activity, is found at low levels in tissues during periods of apoptosis.  相似文献   

3.
The involvement of matrix metalloproteinase (MMPs)-2 and -9, also known as gelatinases, in cancer cell migration and invasion has been well documented, although it is not yet clear how they facilitate metastasis formation in the course of malignancies. The idea that gelatinases are responsible for degradation of extracellular matrix (ECM) components and breakdown of basement membrane (BM) tissue boundaries has turned out not to be entirely correct. An action by remodelling the ECM components of the BM exposing new cryptic sites, or releasing growth factors, cytokines, or active ECM proteolysed fragments seems to be nearer to the truth. On the other hand, tissue inhibitors of gelatinase activity (TIMP-2), are involved both in the MMP-2 activation process; in concert with membrane type 1-MMP (MT1-MMP), and in the inhibition of gelatinolytic activity. Therefore proteolysis, the central step for cancer metastasis, should occur as a result of an imbalance between MMP-2 and TIMP-2. Many studies have reported the importance of this balance in patients with different malignancies, and considerable effort is currently being spent on the study of molecules that can shift the balance in favour of inhibition of MMP proteolytic activity. In this review we focus on the role of gelatinase activity in cancer invasion, addressing the following issues: how and where proteolysis occurs in cancer tissues, how it can be regulated, what the clinical implications are of the studies reported in literature so far, and finally what the future developments in this field that could have an impact on the management of patients affected by malignancies may be.  相似文献   

4.
Complex role of matrix metalloproteinases in angiogenesis   总被引:49,自引:0,他引:49  
Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) play a significant role in regulating angiogenesis,the process of new blood vessel formation.Interstitial collagenase (MMP-1),72kDa gelatinase A/type IV collagenase (MMP-2),and 92 kDA gelatinase B/type IV collagenase (MMP-9) dissolve extracellular matrix (ECM) and may initiate and promote angiogenesis.TIMP-1,TIMP-2,TIMP-3,and possibly,TIMP-4 inhibit neovascularization.A new paradign is emerging that matrilysin (MMP-7),MMP-9,and metalloelastase (MMP-12) may block angiogenesis by converting plasminogen to angiostatin,which is one of the most potent angiogenesis antagonists.MMPs and TIMPs play a complex role in regulating angiogenesis.An understanding of the biochemical and cellular pathways and mechanisms of angiogenesis will provide important information to allow the control of angiogenesis,e.g.the stimulation of angiogenesis for coronary collateral circulation formation;while the inhibition for treating arthritis and cancer.  相似文献   

5.
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases, which can synergistically degrade the major components of extracellular matrix (ECM). A key role in maintaining the balance between ECM deposition and degradation in several physio-pathological processes is carried out, through multiple biological functions, by four members of the tissue inhibitors of metalloproteinases (TIMPs) family. TIMP-1 and TIMP-2 are capable of inhibiting the activities of MMPs, can inhibit tumour growth, invasion and metastasis, exhibit growth factor-like activity, can inhibit angiogenesis and suppress programmed cell death (PCD) independently of the MMP-inhibitory activity. TIMP-3 is the only member which is tightly bound to ECM, inhibits TNF- converting enzyme and induces PCD through the stabilization of TNF- receptors on the cell surface. TIMP-4 plays a role in ECM homeostasis in a tissue-specific fashion and its overexpression induces PCD. The aim of this article is to review the exciting and intriguing literature on TIMPs, with special emphasis on their conflicting-paradoxical roles in PCD and their potential clinical usefulness.  相似文献   

6.
Regulation of the matrix metalloproteinases (MMPs) is crucial to regulate extracellular matrix (ECM) proteolysis which is important in metastasis. This study investigated the mechanism(s) by which three flavonoid-enriched fractions from lowbush blueberry (Vaccinium angustifolium) down-regulate MMP activity in DU145 human prostate cancer cells. Metalloproteinase activity was evaluated from cells exposed to "crude," anthocyanin-enriched (AN) and proanthocyanidin-enriched (PAC) fractions. Differential down-regulation of MMPs was observed. The activity of the endogenous tissue inhibitors of metalloproteinases (TIMPs) from these cells was also evaluated. Increases in TIMP-1 and TIMP-2 activity were observed in response to these fractions. The possible involvement of protein kinase C (PKC) and mitogen-activated protein (MAP) kinase pathways in the flavonoid-mediated decreases in MMP activity was observed. These findings indicate that blueberry flavonoids may use multiple mechanisms in down-regulating MMP activity in these cells.  相似文献   

7.
The matrix metalloproteinase (MMP) system consists of a proteolytic component, the metalloproteinases, and an associated class of tissue inhibitors of metalloproteinases (TIMPs). We investigated the cellular localization of the TIMPs and the gelatinase family of MMPs throughout the latter stages of follicular growth and during the periovulatory period. Immature female rats were injected with eCG, and ovaries were collected at the time of eCG administration (0 h) and at 6, 12, 24, or 36 h after eCG injection (i.e., follicular development group). A second group of animals (periovulatory) was injected with eCG followed by hCG 48 h later, and ovaries were collected at 0, 12, and 24 h after hCG. Ovaries were processed for the cellular localization of gelatinase or TIMP mRNA or gelatinolytic activity. Gelatinase mRNA (MMP-2 and MMP-9) was localized to the theca of developing follicles and to the stroma. Following a hCG stimulus, MMP-2 mRNA increased as the granulosa cells of preovulatory follicles underwent luteinization during formation of the corpus luteum (CL). MMP-9 mRNA remained predominantly in the theca during this period. In situ zymography for gelatinolytic activity demonstrated a pattern of activity that corresponded with the localization of MMP-2 and MMP-9 mRNA around developing follicles. Gelatinolytic activity was observed at the apex of preovulatory follicles and throughout the forming CL. The mRNA for TIMP-1, -2, and -3 was localized to the stroma and theca of developing follicles. TIMP-3 mRNA was present in the granulosa cells of certain follicles but was absent in granulosa cells of adjacent follicles. At 12 h after hCG, luteinizing granulosa cells expressed TIMP-1 and TIMP-3 mRNA, but TIMP-2 mRNA was at levels equivalent to the background. In the newly forming CL at 24 h after hCG administration, the luteal cells expressed TIMP-1, -2, and -3 mRNA, although the pattern of cellular expression was unique for each of the TIMPs. These findings demonstrate that the MMPs and TIMPs are in the cellular compartments appropriate for impacting the remodeling of the extracellular matrix as the follicle grows, ovulates, and forms the CL.  相似文献   

8.
9.
Tissue inhibitor of metalloproteinases (TIMPs; TIMP-1, -2, -3 and -4) are endogenous inhibitor for matrix metalloproteinases (MMPs) that are responsible for remodeling the extracellular matrix (ECM) and involved in migration, invasion and metastasis of tumor cells. Unlike under normal conditions, the imbalance between MMPs and TIMPs is associated with various diseased states. Among TIMPs, TIMP-1, a 184-residue protein, is the only N-linked glycoprotein with glycosylation sites at N30 and N78. The structural analysis of the catalytic domain of human stromelysin-1 (MMP-3) and human TIMP-1 suggests new possibilities of the role of TIMP-1 glycan moieties as a tuner for the proteolytic activities by MMPs. Because the TIMP-1 glycosylation participate in the interaction, aberrant glycosylation of TIMP-1 presumably affects the interaction, thereby leading to pathogenic dysfunction in cancer cells. TIMP-1 has not only the cell proliferation activities but also anti-oncogenic properties. Cancer cells appear to utilize these bilateral aspects of TIMP-1 for cancer progression; an elevated TIMP-1 level exerts to cancer development via MMP-independent pathway during the early phase of tumor formation, whereas it is the aberrant glycosylation of TIMP-1 that overcome the high anti-proteolytic burden. The aberrant glycosylation of TIMP-1 can thus be used as staging and/or prognostic biomarker in colon cancer. [BMB Reports 2012; 45(11): 623-628]  相似文献   

10.
Liver fibrosis is characterized by activation of hepatic stellate cells, which are then involved in synthesis of matrix proteins and in regulating matrix degradation. In the acute phases of liver injury and as liver fibrosis progresses, there is increased expression of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs). Among the changes described, striking features include increased expression of gelatinase A (MMP-2) and membrane type 1-MMP (MT(1)-MMP; MMP-14) as well as TIMP-1 and TIMP-2. These molecules and other family members are involved in regulating degradation of both normal and fibrotic liver matrix. This article outlines recent progress in this field and discusses the mechanisms by which MMPs and TIMPs may contribute to the progression and regression of liver fibrosis. Recently described properties of MMPs and TIMPs of relevance to the pathogenesis of liver fibrosis are outlined. The proposal that regression of liver fibrosis is mediated by decreased expression of TIMPs and involves degradation of fibrillar collagens by a combination of MT(1)-MMP and gelatinase A, in addition to interstitial collagenase, is explored.  相似文献   

11.
Excess proteolytic activity of matrix metalloproteinases (MMPs) contributes to the development of arthritis, cardiovascular diseases and cancer progression, implicating these enzymes as therapeutic targets. While many small molecule inhibitors of MMPs have been developed, clinical uses have been limited, in part by toxicity and off-target effects. Development of the endogenous tissue inhibitors of metalloproteinases (TIMPs) as recombinant biopharmaceuticals represents an alternative therapeutic approach; however, the short plasma half-life of recombinant TIMPs has restricted their potential in this arena. To overcome this limitation, we have modified recombinant human TIMP-1 (rhTIMP-1) by PEGylation on lysine residues. We analyzed a mixture of mono- and di-PEGylated rhTIMP-1 species modified by attachment of 20 kDa mPEG chains (PEG20K-TIMP-1), as confirmed by SELDI-TOF mass spectrometry. This preparation retained complete inhibitory activity toward the MMP-3 catalytic domain and partial inhibitory activity toward full length MMP-9. Pharmacokinetic evaluation showed that PEGylation extended the plasma half-life of rhTIMP-1 in mice from 1.1 h to 28 h. In biological assays, PEG20K-TIMP-1 inhibited both MMP-dependent cancer cell invasion and tumor cell associated gelatinase activity. Overall these results suggest that PEGylated TIMP-1 exhibits improved potential for development as an anti-cancer recombinant protein therapeutic, and additionally may offer potential for clinical applications in the treatment of other diseases.  相似文献   

12.
Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) regulate proteolysis of the extracellular matrix and other extracellular proteins, including growth factors and their receptors. The aberrant expression of these genes is common in most cancers. We profiled the RNA levels of every human MMP and TIMP in a variety of cell types (fibroblast, endothelial, hematopoietic, carcinoma, melanoma, and glioma) using quantitative PCR, with the aim of identifying novel expression patterns. Almost all members of the membrane-type (MT-) MMP and TIMP families were elevated in glioma lines compared to carcinomas. In clinical glioma specimens, there were positive correlations between glioma grade and RNA levels of MT-1, MT-2, and MT-6 MMP, TIMP-1 and TIMP-2, and for several growth factors and receptors. These findings suggest that advanced malignant gliomas have elevated levels of membrane-associated MMPs and TIMPs, which may potentially regulate vascularization and invasion. Concurrent elevation of signaling molecules suggests potential bidirectional relationships that enhance tumor aggressiveness.  相似文献   

13.
14.
15.
16.
Metalloproteases are important in many aspects of biology, ranging from cell proliferation, differentiation and remodeling of the extracellular matrix (ECM) to vascularization and cell migration. These events occur several times during organogenesis in both normal development and during tumor progression. Mechanisms of metalloprotease action underlying these events include the proteolytic cleavage of growth factors so that they can become available to cells not in direct physical contact, degradation of the ECM so that founder cells can move across tissues into nearby stroma, and regulated receptor cleavage to terminate migratory signaling. Most of these processes require a delicate balance between the functions of matrix metalloproteases (MMPs) or metalloprotease-disintegrins (ADAMs) and natural tissue inhibitors of metalloproteases (TIMPs). In this review, we discuss recent progress in identifying an essential role for metalloproteases in axon outgrowth, as an example of a focal invasive event. We also discuss the evolving concept of how MMPs might regulate stem cell fate during tumor development.  相似文献   

17.
18.
Nitric oxide (NO) is a multifunctional messenger molecule generated from L-arginine by a family of enzymes, including nitric oxide synthase (NOS). This study was performed to examine whether NO modulates the production of matrix metalloproteinases (MMPs), which degrade all components of extracellular matrix (ECM), in rheumatoid synovial cells. We investigated the effects of exogenously generated NO by a NO donor, S-nitroso-N-acetyl-DL-penicillamine (SNAP), on the MMPs production by rheumatoid synovial cells. Culture media conditioned by SNAP-treated synovial cells were examined by gelatin zymography and immunoblot analysis. Incubation of synovial cells with SNAP resulted in gelatinase A production in a dose-dependent fashion. Furthermore, RT-PCR analysis demonstrated that MMP-2 mRNA expression was induced in SNAP-treated synovial cells. In contrast, SNAP did not influence the production of TIMP-1 and TIMP-2, which preferentially inhibit MMP-2, by rheumatoid synovial cells. Our data indicate that NO could modulate MMP production by rheumatoid synovial cells and therefore contribute to ECM degradation of articular components in RA.  相似文献   

19.
20.
The tissue inhibitor of the metalloproteinase-3 (TIMP-3) gene was isolated as a gene involved in the process of ascorbate-induced differentiation of mouse MC3T3-E1 cells by the differential display method. The functional roles of TIMP-3 were characterized by establishing stable cell lines, which constitutively expressed the TIMP-3 gene. The TIMP-3 transfectants produced type I collagen at the same level as that of normal cells in response to ascorbic acid 2-phosphate (AscP). However, the expression of the other osteoblastic marker proteins such as alkaline phosphatase (ALPase), osteopontin (OP), osteocalcin (OC), osteonectin (ON) and matrix metalloproteinases (MMPs) remained at a low level even in the presence of AscP. Furthermore, no mineralization of the extracellular matrix (ECM) occurred with the transfectants. Remodeling ECM through TIMPs and MMPs is concluded to be required for osteoblastic differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号