首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteins need to interact with other molecules in order to carry out their biological role. Knowing the protein structure is crucial to study these interactions and it can for example lead to drug design. However, the cost of determining the structure of a protein with current experimental techniques is very high – both in time and money. In the absence of experimental structures, current computational tools are not always able to correctly predict the native fold. We are using a physics based computational framework to determine the structure of proteins. The pipeline is designed to handle sparse data coming from evolution, bioinformatics or experiments (solid state NMR, cross linking, …). The data is transformed into a set of restraints used in our physical simulations. However, we require that only a subset of the input information is satisfied. This is done to account for uncertainties in the input data. The framework uses a Hamiltonian-temperature replica exchange formalism that allows the system to choose what data is compatible with the physics of the system. I will show some results on how this methodology can help us in both protein structure refinement and protein structure prediction.  相似文献   

2.
MOTIVATION: A large body of experimental and theoretical evidence suggests that local structural determinants are frequently encoded in short segments of protein sequence. Although the local structural information, once recognized, is particularly useful in protein structural and functional analyses, it remains a difficult problem to identify embedded local structural codes based solely on sequence information. RESULTS: In this paper, we describe a local structure prediction method aiming at predicting the backbone structures of nine-residue sequence segments. Two elements are the keys for this local structure prediction procedure. The first key element is the LSBSP1 database, which contains a large number of non-redundant local structure-based sequence profiles for nine-residue structure segments. The second key element is the consensus approach, which identifies a consensus structure from a set of hit structures. The local structure prediction procedure starts by matching a query sequence segment of nine consecutive amino acid residues to all the sequence profiles in the local structure-based sequence profile database (LSBSP1). The consensus structure, which is at the center of the largest structural cluster of the hit structures, is predicted to be the native state structure adopted by the query sequence segment. This local structure prediction method is assessed with a large set of random test protein structures that have not been used in constructing the LSBSP1 database. The benchmark results indicate that the prediction capacities of the novel local structure prediction procedure exceed the prediction capacities of the local backbone structure prediction methods based on the I-sites library by a significant margin. AVAILABILITY: All the computational and assessment procedures have been implemented in the integrated computational system PrISM.1 (Protein Informatics System for Modeling). The system and associated databases for LINUX systems can be downloaded from the website: http://www.columbia.edu/~ay1/.  相似文献   

3.

Background

Predicting protein structure from sequence is one of the most significant and challenging problems in bioinformatics. Numerous bioinformatics techniques and tools have been developed to tackle almost every aspect of protein structure prediction ranging from structural feature prediction, template identification and query-template alignment to structure sampling, model quality assessment, and model refinement. How to synergistically select, integrate and improve the strengths of the complementary techniques at each prediction stage and build a high-performance system is becoming a critical issue for constructing a successful, competitive protein structure predictor.

Results

Over the past several years, we have constructed a standalone protein structure prediction system MULTICOM that combines multiple sources of information and complementary methods at all five stages of the protein structure prediction process including template identification, template combination, model generation, model assessment, and model refinement. The system was blindly tested during the ninth Critical Assessment of Techniques for Protein Structure Prediction (CASP9) in 2010 and yielded very good performance. In addition to studying the overall performance on the CASP9 benchmark, we thoroughly investigated the performance and contributions of each component at each stage of prediction.

Conclusions

Our comprehensive and comparative study not only provides useful and practical insights about how to select, improve, and integrate complementary methods to build a cutting-edge protein structure prediction system but also identifies a few new sources of information that may help improve the design of a protein structure prediction system. Several components used in the MULTICOM system are available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/.  相似文献   

4.
MOTIVATION: Multiple structure alignments are becoming important tools in many aspects of structural bioinformatics. The current explosion in the number of available protein structures demands multiple structural alignment algorithms with an adequate balance of accuracy and speed, for large scale applications in structural genomics, protein structure prediction and protein classification. RESULTS: A new multiple structural alignment program, MAMMOTH-mult, is described. It is demonstrated that the alignments obtained with the new method are an improvement over previous manual or automatic alignments available in several widely used databases at all structural levels. Detailed analysis of the structural alignments for a few representative cases indicates that MAMMOTH-mult delivers biologically meaningful trees and conservation at the sequence and structural levels of functional motifs in the alignments. An important improvement over previous methods is the reduction in computational cost. Typical alignments take only a median time of 5 CPU seconds in a single R12000 processor. MAMMOTH-mult is particularly useful for large scale applications. AVAILABILITY: http://ub.cbm.uam.es/mammoth/mult.  相似文献   

5.

Background

Protein structures are critical for understanding the mechanisms of biological systems and, subsequently, for drug and vaccine design. Unfortunately, protein sequence data exceed structural data by a factor of more than 200 to 1. This gap can be partially filled by using computational protein structure prediction. While structure prediction Web servers are a notable option, they often restrict the number of sequence queries and/or provide a limited set of prediction methodologies. Therefore, we present a standalone protein structure prediction software package suitable for high-throughput structural genomic applications that performs all three classes of prediction methodologies: comparative modeling, fold recognition, and ab initio. This software can be deployed on a user''s own high-performance computing cluster.

Methodology/Principal Findings

The pipeline consists of a Perl core that integrates more than 20 individual software packages and databases, most of which are freely available from other research laboratories. The query protein sequences are first divided into domains either by domain boundary recognition or Bayesian statistics. The structures of the individual domains are then predicted using template-based modeling or ab initio modeling. The predicted models are scored with a statistical potential and an all-atom force field. The top-scoring ab initio models are annotated by structural comparison against the Structural Classification of Proteins (SCOP) fold database. Furthermore, secondary structure, solvent accessibility, transmembrane helices, and structural disorder are predicted. The results are generated in text, tab-delimited, and hypertext markup language (HTML) formats. So far, the pipeline has been used to study viral and bacterial proteomes.

Conclusions

The standalone pipeline that we introduce here, unlike protein structure prediction Web servers, allows users to devote their own computing assets to process a potentially unlimited number of queries as well as perform resource-intensive ab initio structure prediction.  相似文献   

6.
We report the results of a first, collective, blind experiment in RNA three-dimensional (3D) structure prediction, encompassing three prediction puzzles. The goals are to assess the leading edge of RNA structure prediction techniques; compare existing methods and tools; and evaluate their relative strengths, weaknesses, and limitations in terms of sequence length and structural complexity. The results should give potential users insight into the suitability of available methods for different applications and facilitate efforts in the RNA structure prediction community in ongoing efforts to improve prediction tools. We also report the creation of an automated evaluation pipeline to facilitate the analysis of future RNA structure prediction exercises.  相似文献   

7.
Despite the increasing number of recently solved membrane protein structures, coverage of membrane protein fold space remains relatively sparse. This necessitates the use of computational strategies to investigate membrane protein structure, allowing us to further our understanding of how membrane proteins carry out their diverse range of functions, while aiding the development of novel predictive tools with which to probe uncharacterised folds. Analysis of known structures, the application of machine learning techniques, molecular dynamics simulations and protein structure prediction have enabled significant advances to be made in the field of membrane protein research. In this communication, the key bioinformatic methods that allow the characterisation of membrane proteins are reviewed, the tools available for the structural analysis of membrane proteins are presented and the contribution these tools have made to expanding our understanding of membrane protein structure, function and stability is discussed.  相似文献   

8.
The protein-protein docking problem is one of the focal points of activity in computational biophysics and structural biology. The three-dimensional structure of a protein-protein complex, generally, is more difficult to determine experimentally than the structure of an individual protein. Adequate computational techniques to model protein interactions are important because of the growing number of known protein structures, particularly in the context of structural genomics. Docking offers tools for fundamental studies of protein interactions and provides a structural basis for drug design. Protein-protein docking is the prediction of the structure of the complex, given the structures of the individual proteins. In the heart of the docking methodology is the notion of steric and physicochemical complementarity at the protein-protein interface. Originally, mostly high-resolution, experimentally determined (primarily by x-ray crystallography) protein structures were considered for docking. However, more recently, the focus has been shifting toward lower-resolution modeled structures. Docking approaches have to deal with the conformational changes between unbound and bound structures, as well as the inaccuracies of the interacting modeled structures, often in a high-throughput mode needed for modeling of large networks of protein interactions. The growing number of docking developers is engaged in the community-wide assessments of predictive methodologies. The development of more powerful and adequate docking approaches is facilitated by rapidly expanding information and data resources, growing computational capabilities, and a deeper understanding of the fundamental principles of protein interactions.  相似文献   

9.
The protein-protein docking problem is one of the focal points of activity in computational biophysics and structural biology. The three-dimensional structure of a protein-protein complex, generally, is more difficult to determine experimentally than the structure of an individual protein. Adequate computational techniques to model protein interactions are important because of the growing number of known protein structures, particularly in the context of structural genomics. Docking offers tools for fundamental studies of protein interactions and provides a structural basis for drug design. Protein-protein docking is the prediction of the structure of the complex, given the structures of the individual proteins. In the heart of the docking methodology is the notion of steric and physicochemical complementarity at the protein-protein interface. Originally, mostly high-resolution, experimentally determined (primarily by x-ray crystallography) protein structures were considered for docking. However, more recently, the focus has been shifting toward lower-resolution modeled structures. Docking approaches have to deal with the conformational changes between unbound and bound structures, as well as the inaccuracies of the interacting modeled structures, often in a high-throughput mode needed for modeling of large networks of protein interactions. The growing number of docking developers is engaged in the community-wide assessments of predictive methodologies. The development of more powerful and adequate docking approaches is facilitated by rapidly expanding information and data resources, growing computational capabilities, and a deeper understanding of the fundamental principles of protein interactions.  相似文献   

10.
MOTIVATION: A large body of evidence suggests that protein structural information is frequently encoded in local sequences-sequence-structure relationships derived from local structure/sequence analyses could significantly enhance the capacities of protein structure prediction methods. In this paper, the prediction capacity of a database (LSBSP2) that organizes local sequence-structure relationships encoded in local structures with two consecutive secondary structure elements is tested with two computational procedures for protein structure prediction. The goal is twofold: to test the folding hypothesis that local structures are determined by local sequences, and to enhance our capacity in predicting protein structures from their amino acid sequences. RESULTS: The LSBSP2 database contains a large set of sequence profiles derived from exhaustive pair-wise structural alignments for local structures with two consecutive secondary structure elements. One computational procedure makes use of the PSI-BLAST alignment program to predict local structures for testing sequence fragments by matching the testing sequence fragments onto the sequence profiles in the LSBSP2 database. The results show that 54% of the test sequence fragments were predicted with local structures that match closely with their native local structures. The other computational procedure is a filter system that is capable of removing false positives as possible from a set of PSI-BLAST hits. An assessment with a large set of non-redundant protein structures shows that the PSI-BLAST + filter system improves the prediction specificity by up to two-fold over the prediction specificity of the PSI-BLAST program for distantly related protein pairs. Tests with the two computational procedures above demonstrate that local sequence-structure relationships can indeed enhance our capacity in protein structure prediction. The results also indicate that local sequences encoded with strong local structure propensities play an important role in determining the native state folding topology.  相似文献   

11.
One of the major limitations of computational protein structure prediction is the deviation of predicted models from their experimentally derived true, native structures. The limitations often hinder the possibility of applying computational protein structure prediction methods in biochemical assignment and drug design that are very sensitive to structural details. Refinement of these low‐resolution predicted models to high‐resolution structures close to the native state, however, has proven to be extremely challenging. Thus, protein structure refinement remains a largely unsolved problem. Critical assessment of techniques for protein structure prediction (CASP) specifically indicated that most predictors participating in the refinement category still did not consistently improve model quality. Here, we propose a two‐step refinement protocol, called 3Drefine, to consistently bring the initial model closer to the native structure. The first step is based on optimization of hydrogen bonding (HB) network and the second step applies atomic‐level energy minimization on the optimized model using a composite physics and knowledge‐based force fields. The approach has been evaluated on the CASP benchmark data and it exhibits consistent improvement over the initial structure in both global and local structural quality measures. 3Drefine method is also computationally inexpensive, consuming only few minutes of CPU time to refine a protein of typical length (300 residues). 3Drefine web server is freely available at http://sysbio.rnet.missouri.edu/3Drefine/ . Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Liu HL  Hsu JP 《Proteomics》2005,5(8):2056-2068
The major challenges in structural proteomics include identifying all the proteins on the genome-wide scale, determining their structure-function relationships, and outlining the precise three-dimensional structures of the proteins. Protein structures are typically determined by experimental approaches such as X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. However, the knowledge of three-dimensional space by these techniques is still limited. Thus, computational methods such as comparative and de novo approaches and molecular dynamic simulations are intensively used as alternative tools to predict the three-dimensional structures and dynamic behavior of proteins. This review summarizes recent developments in structural proteomics for protein structure determination; including instrumental methods such as X-ray crystallography and NMR spectroscopy, and computational methods such as comparative and de novo structure prediction and molecular dynamics simulations.  相似文献   

13.
Electron cryo-microscopy (cryo-EM) has played an increasingly important role in elucidating the structure and function of macromolecular assemblies in near native solution conditions. Typically, however, only non-atomic resolution reconstructions have been obtained for these large complexes, necessitating computational tools for integrating and extracting structural details. With recent advances in cryo-EM, maps at near-atomic resolutions have been achieved for several macromolecular assemblies from which models have been manually constructed. In this work, we describe a new interactive modeling toolkit called Gorgon targeted at intermediate to near-atomic resolution density maps (10-3.5 ?), particularly from cryo-EM. Gorgon's de novo modeling procedure couples sequence-based secondary structure prediction with feature detection and geometric modeling techniques to generate initial protein backbone models. Beyond model building, Gorgon is an extensible interactive visualization platform with a variety of computational tools for annotating a wide variety of 3D volumes. Examples from cryo-EM maps of Rotavirus and Rice Dwarf Virus are used to demonstrate its applicability to modeling protein structure.  相似文献   

14.
15.
SUMMARY: StrBioLib is a library of Java classes useful for developing software for computational structural biology research. StrBioLib contains classes to represent and manipulate protein structures, biopolymer sequences, sets of biopolymer sequences, and alignments between biopolymers based on either sequence or structure. Interfaces are provided to interact with commonly used bioinformatics applications, including (psi)-blast, modeller, muscle and Primer3, and tools are provided to read and write many file formats used to represent bioinformatic data. The library includes a general-purpose neural network object with multiple training algorithms, the Hooke and Jeeves non-linear optimization algorithm, and tools for efficient C-style string parsing and formatting. StrBioLib is the basis for the Pred2ary secondary structure prediction program, is used to build the astral compendium for sequence and structure analysis, and has been extensively tested through use in many smaller projects. Examples and documentation are available at the site below. AVAILABILITY: StrBioLib may be obtained under the terms of the GNU LGPL license from http://strbio.sourceforge.net/  相似文献   

16.
Cancer progression is a global burden. The incidence and mortality now reach 30 million deaths per year. Several pathways of cancer are under investigation for the discovery of effective therapeutics. The present study highlights the structural details of the ubiquitin protein ‘Ubiquitin-conjugating enzyme E2D4’ (UBE2D4) for the novel lead structure identification in cancer drug discovery process. The evaluation of 3D structure of UBE2D4 was carried out using homology modelling techniques. The optimized structure was validated by standard computational protocols. The active site region of the UBE2D4 was identified using computational tools like CASTp, Q-site Finder and SiteMap. The hydrophobic pocket which is responsible for binding with its natural receptor ubiquitin ligase CHIP (C-terminal of Hsp 70 interacting protein) was identified through protein-protein docking study. Corroborating the results obtained from active site prediction tools and protein-protein docking study, the domain of UBE2D4 which is responsible for cancer cell progression is sorted out for further docking study. Virtual screening with large structural database like CB_Div Set and Asinex BioDesign small molecular structural database was carried out. The obtained new ligand molecules that have shown affinity towards UBE2D4 were considered for ADME prediction studies. The identified new ligand molecules with acceptable parameters of docking, ADME are considered as potent UBE2D4 enzyme inhibitors for cancer therapy.  相似文献   

17.
The genomes of many organisms have been sequenced in the last 5 years. Typically about 30% of predicted genes from a newly sequenced genome cannot be given functional assignments using sequence comparison methods. In these situations three-dimensional structural predictions combined with a suite of computational tools can suggest possible functions for these hypothetical proteins. Suggesting functions may allow better interpretation of experimental data (e.g., microarray data and mass spectroscopy data) and help experimentalists design new experiments. In this paper, we focus on three hypothetical proteins of Shewanella oneidensis MR-1 that are potentially related to iron transport/metabolism based on microarray experiments. The threading program PROSPECT was used for protein structural predictions and functional annotation, in conjunction with literature search and other computational tools. Computational tools were used to perform transmembrane domain predictions, coiled coil predictions, signal peptide predictions, sub-cellular localization predictions, motif prediction, and operon structure evaluations. Combined computational results from all tools were used to predict roles for the hypothetical proteins. This method, which uses a suite of computational tools that are freely available to academic users, can be used to annotate hypothetical proteins in general.  相似文献   

18.
The function of proteins can often be inferred from their three-dimensional structures. Experimental structural biologists spent decades studying these structures, but the accelerated pace of protein sequencing continuously increases the gaps between sequences and structures. The early 2020s saw the advent of a new generation of deep learning-based protein structure prediction tools that offer the potential to predict structures based on any number of protein sequences.In this review, we give an overview of the impact of this new generation of structure prediction tools, with examples of the impacted field in the life sciences. We discuss the novel opportunities and new scientific and technical challenges these tools present to the broader scientific community. Finally, we highlight some potential directions for the future of computational protein structure prediction.  相似文献   

19.
Worldwide structural genomics projects are increasing structure coverage of sequence space but have not significantly expanded the protein structure space itself (i.e., number of unique structural folds) since 2007. Discovering new structural folds experimentally by directed evolution and random recombination of secondary-structure blocks is also proved rarely successful. Meanwhile, previous computational efforts for large-scale mapping of protein structure space are limited to simple model proteins and led to an inconclusive answer on the completeness of the existing observed protein structure space. Here, we build novel protein structures by extending naturally occurring circular (single-loop) permutation to multiple loop permutations (MLPs). These structures are clustered by structural similarity measure called TM-score. The computational technique allows us to produce different structural clusters on the same naturally occurring, packed, stable core but with alternatively connected secondary-structure segments. A large-scale MLP of 2936 domains from structural classification of protein domains reproduces those existing structural clusters (63%) mostly as hubs for many nonredundant sequences and illustrates newly discovered novel clusters as islands adopted by a few sequences only. Results further show that there exist a significant number of novel potentially stable clusters for medium-size or large-size single-domain proteins, in particular, > 100 amino acid residues, that are either not yet adopted by nature or adopted only by a few sequences. This study suggests that MLP provides a simple yet highly effective tool for engineering and design of novel protein structures (including naturally knotted proteins). The implication of recovering new-fold targets from critical assessment of structure prediction techniques (CASP) by MLP on template-based structure prediction is also discussed. Our MLP structures are available for download at the publication page of the Web site http://sparks.informatics.iupui.edu.  相似文献   

20.
A fundamental goal of medical genetics is the accurate prediction of genotype–phenotype correlations. As an approach to develop more accurate in silico tools for prediction of disease-causing mutations of structural proteins, we present a gene- and disease-specific prediction tool based on a large systematic analysis of missense mutations from hemophilia A (HA) patients. Our HA-specific prediction tool, HApredictor, showed disease prediction accuracy comparable to other publicly available prediction software. In contrast to those methods, its performance is not limited to non-synonymous mutations. Given the role of synonymous mutations in disease and drug codon optimization, we propose that utilizing a gene- and disease-specific method can be highly useful to make functional predictions possible even for synonymous mutations. Incorporating computational metrics at both nucleotide and amino acid levels along with multiple protein sequence/structure alignment significantly improved the predictive performance of our tool. HApredictor is freely available for download at http://www.ncbi.nlm.nih.gov/CBBresearch/Przytycka/HA_Predict/index.htm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号