首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

To examine quadriceps muscle fatigue and central motor output during fatiguing single joint exercise at 40% and 80% maximal torque output in resistance trained men.

Method

Ten resistance trained men performed fatiguing isometric knee extensor exercise at 40% and 80% of maximal torque output. Maximal torque, rate of torque development, and measures of central motor output and peripheral muscle fatigue were recorded at two matched volumes of exercise, and after a final contraction performed to exhaustion. Central motor output was quantified from changes in voluntary activation, normalized surface electromyograms (EMG), and V-waves. Quadriceps muscle fatigue was assessed from changes in the size and shape of the resting potentiated twitch (Q.pot.tw). Central motor output during the exercise protocols was estimated from EMG and interpolated twitches applied during the task (VAsub).

Results

Greater reductions in maximal torque and rate of torque development were observed during the 40% protocol (p<0.05). Maximal central motor output did not change for either protocol. For the 40% protocol reductions from pre-exercise in rate and amplitude variables calculated from the Q.pot.tw between 66.2 to 70.8% (p<0.001) exceeded those observed during the 80% protocol (p<0.01). V-waves only declined during the 80% protocol between 56.8 ± 35.8% to 53.6 ± 37.4% (p<0.05). At the end of the final 80% contraction VAsub had increased from 91.2 ± 6.2% to 94.9 ± 4.7% (p = 0.005), but a greater increase was observed during the 40% contraction where VAsub had increased from 67.1 ± 6.1% to 88.9 ± 9.6% (p<0.001).

Conclusion

Maximal central motor output in resistance trained men is well preserved despite varying levels of peripheral muscle fatigue. Upregulated central motor output during the 40% contraction protocol appeared to elicit greater peripheral fatigue. V-waves declines during the 80% protocol suggest intensity dependent modulation of the Ia afferent pathway.  相似文献   

2.

Objective

Muscle carnosine and its methylated form anserine are histidine-containing dipeptides. Both dipeptides have the ability to quench reactive carbonyl species and previous studies have shown that endogenous tissue levels are decreased in chronic diseases, such as diabetes.

Design and Methods

Rodent study: Skeletal muscles of rats and mice were collected from 4 different diet-intervention studies, aiming to induce various degrees of glucose intolerance: 45% high-fat feeding (male rats), 60% high-fat feeding (male rats), cafeteria feeding (male rats), 70% high-fat feeding (female mice). Body weight, glucose-tolerance and muscle histidine-containing dipeptides were assessed. Human study: Muscle biopsies were taken from m. vastus lateralis in 35 males (9 lean, 8 obese, 9 prediabetic and 9 newly diagnosed type 2 diabetic patients) and muscle carnosine and gene expression of muscle fiber type markers were measured.

Results

Diet interventions in rodents (cafeteria and 70% high-fat feeding) induced increases in body weight, glucose intolerance and levels of histidine-containing dipeptides in muscle. In humans, obese, prediabetic and diabetic men had increased muscle carnosine content compared to the lean (+21% (p>0.1), +30% (p<0.05) and +39% (p<0.05), respectively). The gene expression of fast-oxidative type 2A myosin heavy chain was increased in the prediabetic (1.8-fold, p<0.05) and tended to increase in the diabetic men (1.6-fold, p = 0.07), compared to healthy lean subjects.

Conclusion

Muscle histidine-containing dipeptides increases with progressive glucose intolerance, in male individuals (cross-sectional). In addition, high-fat diet-induced glucose intolerance was associated with increased muscle histidine-containing dipeptides in female mice (interventional). Increased muscle carnosine content might reflect fiber type composition and/or act as a compensatory mechanism aimed at preventing cell damage in states of impaired glucose tolerance.  相似文献   

3.

[Purpose]

The purpose of the study was to investigate the relationship between CK variability and body composition and muscle damage markers following eccentric exercise.

[Methods]

Total 119 healthy male subjects were recruited to perform 50 eccentric contractions consisted of 2 sets of 25 contractions. Then, blood creatine kinase (CK) activity was analyzed to divide into three groups based on their CK activity levels. Maximum isometric strength (MIS), muscle soreness (SOR) and body composition data were obtained before and after exercise.

[Results]

The results showed that high CK responders had a significant decrease in MIS (p<0.001) and greater SOR (p<0.01) following eccentric exercise compared to low CK responders. Percent body fat was also higher in high responders compared to low responders (p=0.014). Peak CK activity was significantly correlated with MIS and SOR but no correlation with % body fat, muscle mass, and body mass index.

[Conclusion]

CK variability following eccentric exercise is closely related to MIS and SOR and % body fat may be a potent factor for CK variability.  相似文献   

4.
[Purpose] This study aimed to investigate the effects of branched-chain amino acid (BCAA) supplement on delayed onset muscle soreness (DOMS) by analyzing the maximum muscle strength and indicators of muscle damage.[Methods] Twelve men with majors in physical education were assigned to the BCAA group and placebo group in a double-blinded design, and repeated measurements were conducted. DOMS was induced with an isokinetic exercise. Following BCAA administration, the changes in the knee extension peak torque, flexion peak torque, aspartate aminotransferase (AST), creatine kinase (CK), and lactate dehydrogenase (LDH) concentrations were analyzed. The maximum knee muscle strength was measured at the baseline (pre-D0) following BCAA administration for 5 days before exercise (-D5, -4D, -3D, -2D, -1D). In contrast, the post-treatment measurements (D3) were recorded after BCAA administration for 3 days (post-D0, D1, D2). Blood samples were obtained before (pre-D0), immediately after (post-D0), 24 h (D1), 48 h (D2), and 72 h (D3) after the exercise to analyze the indicators of muscle strength. BCAA was administered twice daily for 8 days (5 days and 3 days before inducing DOMS and during the experimental period, respectively).[Results] There was no difference in the flexion peak torque between the groups. However, the BCAA group showed a significantly higher extension peak torque at D3 (second isokinetic exercise), compared to the placebo group (p<.05). There was no difference in AST changes between the groups. Nonetheless, the CK and LDH were significantly reduced in the BCAA group, compared to the placebo group. There was no correlation between the extension peak torque and flexion peak torque. However, the CK and LDH increased proportionately in DOMS. Moreover, their concentrations significantly increased with a decreasing peak torque (p<.01).[Conclusion] An exercise-induced DOMS results in a decrease in the peak torque and a proportional increase in the CK and LDH concentrations. Moreover, the administration of BCAA inhibits the reduction of the extension peak torque and elevation of CK and LDH concentrations. Therefore, BCAA might be administered as a supplement to maintain the muscle strength and prevent muscle damage during vigorous exercises that may induce DOMS in sports settings.  相似文献   

5.

Purpose

To examine changes in hamstring muscle fatigue and central motor output during a 90-minute simulated soccer match, and the concomitant changes in hamstring maximal torque and rate of torque development.

Method

Eight amateur male soccer players performed a 90-minute simulated soccer match, with measures performed at the start of and every 15-minutes during each half. Maximal torque (Nm) and rate of torque development (RTD; Nm.s–1) were calculated from maximal isometric knee flexor contractions performed at 10° of flexion. Hamstring peripheral fatigue was assessed from changes in the size and shape of the resting twitch (RT). Hamstring central motor output was quantified from voluntary activation (%) and normalized biceps femoris (BF) and medial hamstrings (MH) electromyographic amplitudes (EMG/M).

Results

Maximal torque was reduced at 45-minutes by 7.6±9.4% (p<0.05). RTD in time intervals of 0–25, 0–50, and 0–75 ms post-contraction onset were reduced after 15-minutes in the first-half between 29.6 to 46.2% (p<0.05), and were further reduced at the end of the second-half (p<0.05). Maximal EMG/M was reduced for biceps femoris only concomitant to the time-course of reductions in maximal torque (p = 0.007). The rate of EMG rise for BF and MH was reduced in early time periods (0–75 ms) post-contraction onset (p<0.05). No changes were observed for the size and shape of the RT, indicating no hamstring peripheral fatigue.

Conclusion

Centrally mediated reductions in maximal torque and rate of torque development provide insight into factors that may explain hamstring injury risk during soccer. Of particular interest were early reductions during the first-half of hamstring rate of torque development, and the decline in maximal EMG/M of biceps femoris in the latter stages of the half. These are important findings that may help explain why the hamstrings are particularly vulnerable to strain injury during soccer.  相似文献   

6.

Introduction

Association of knee and low back pain with sleep disturbance is poorly understood. We aimed to clarify the independent and combined effects of these orthopedic symptoms on sleep in a large-scale general population.

Methods

Cross-sectional data about sleep and knee/low back pain were collected for 9,611 community residents (53±14 years old) by a structured questionnaire. Sleep duration less than 6 h/d was defined as short sleep. Sleep quality and the presence of knee and low back pain were evaluated by dichotomous questions. Subjects who complained about knee or low back pains were graded by tertiles of a numerical response scale (NRS) score and a Roland-Morris disability questionnaire (RDQ) score respectively. Multivariate regression analyses were performed to determine the correlates of short sleep duration and poor sleep quality.

Results

Frequency of participants who complained of the orthopedic symptoms was as follows; knee pain, 29.0%; low back pain, 42.0% and both knee and low back pain 17.6%. Both knee and low back pain were significantly and independently associated with short sleep duration (knee pain: odds ratio (OR) = 1.19, p<0.01; low back pain: OR = 1.13, p = 0.01) and poor sleep quality (knee pain: OR = 1.22, p<0.01; low back pain; OR = 1.57, p<0.01). The group in the highest tertile of the NRS or RDQ score had the highest risk for short sleep duration and poor sleep quality except for the relationship between the highest tertile of the RDQ score and short sleep duration.(the highest tertile of the NRS: OR for short sleep duration = 1.31, p<0.01; OR for poor sleep quality = 1.47, p<0.01; the highest tertile of the RDQ: OR for short sleep duration = 1.11, p = 0.12; OR for poor sleep quality = 1.81, p<0.01) Further, coincident knee and low back pain raised the odds ratios for short sleep duration (either of knee or low back pain: OR = 1.10, p = 0.06; both knee and low back pain: OR = 1.40, p<0.01) and poor sleep quality (either of knee or low back pain: OR = 1.61, p<0.01; both knee and low back pain: OR = 2.17, p<0.01).

Conclusion

Knee and low back pains were independently associated with short sleep duration and poor sleep quality. Further, they additively increased the correlation with these sleep problems in the general population.  相似文献   

7.
Healthy untrained men performed 10 series of 12 knee eccentric extension repetitions (EE) at 160°/s. The maximal voluntary isometric contraction force of the quadriceps muscle, the maximal rate of electrically induced torque development (RTD) and relaxation (RTR), isokinetic concentric torque at 30°/s, the electrostimulation-induced torque at 20 and 100 Hz frequencies were established before and after EE at shorter and longer muscle lengths. Besides, voluntary activation (VA) index and central activation ratio (CAR) were tested. There was more peripheral fatigue than central after EE. We established more central fatigue as well as low frequency fatigue at a shorter muscle length compared to the longer muscle length. Relative RTD as well as relative RTR, improved after EE and did not depend on the muscle length. Finally, central fatigue is inversely significantly related with the eccentric torque reduction during eccentric exercise and with the changes in muscle torque induced by low frequency stimulation.  相似文献   

8.

Objective

To study the mechanism of the no-reflow phenomenon using coronary angiography (CAG) and intravascular ultrasound (IVUS).

Methods

A total of 120 patients with acute myocardial infarction (AMI) who successfully underwent indwelling intracoronary stent placement by percutaneous coronary intervention (PCI). All patients underwent pre- and post-PCI CAG and pre-IVUS. No-reflow was defined as post-PCI thrombolysis in myocardial infarction (TIMI) grade 0, 1, or 2 flow in the absence of mechanical obstruction. Normal reflow was defined as TIMI grade 3 flow. The pre-operation reference vascular area, minimal luminal cross-sectional area, plaque cross-sectional area, lesion length, plaque volume and plaque traits were measured by IVUS.

Results

The no-reflow group was observed in 14 cases (11.6%) and normal blood-flow group in 106 cases (89.4%) based on CAG results. There was no statistically significant difference in the patients’ medical history, reference vascular area (no-flow vs. normal-flow; 15.5 ± 3.2 vs. 16.2 ± 3.3, p> 0.05) and lesion length (21.9 ± 5.1 vs. 19.5 ± 4.8, p> 0.05) between the two groups. No-reflow patients had a longer symptom onset to reperfusion time compared to normal blood-flow group [(6.6 ± 3.1) h vs (4.3 ± 2.7) h; p< 0.05] and higher incidence of TIMI flow grade< 3 (71.4% vs 49.0%, p< 0.05). By IVUS examination, the no-reflow group had a significantly increased coronary plaque area and plaque volume compared to normal blood-flow group [(13.7 ± 3.0) mm2 vs (10.2 ± 2.9) mm2; (285.4 ± 99.8) mm3 vs (189.7 ± 86.4) mm3; p< 0.01]. The presence of IVUS-detected soft plaque (57.1% vs. 24.0%, p< 0.01), eccentric plaque (64.2% vs. 33.7%, p< 0.05), plaque rupture (50.0% vs. 21.2%, p< 0.01), and thrombosis (42.8% vs. 15.3%) were significantly more common in no-reflow group.

Conclusion

There was no obvious relationship between the coronary risk factors and no-reflow phenomenon. The symptom onset to reperfusion time, TIMI flow grade before stent deployment, plaque area, soft plaques, eccentric plaques, plaque rupture and thrombosis may be risk factors for the no-reflow phenomenon after PCI.  相似文献   

9.
Objectives:Stretch reflex responses were considered to be affected by the velocity of muscle fiber lengthening and angular velocity. However, the results of previous studies in vivo and in vitro are inconsistent in this regard. The purpose of the present study was to investigate the effects of the velocity of fascicle lengthening on the amplitude of the stretch reflex for each trial with a high angular velocity and wide range of motion.Methods:Thirteen healthy men volunteered for this study. While the ankle was passively moved from 100 to 80 deg at five different angular velocities (100, 200, 300, 500, and 600 deg⋅s-1), the velocity of fascicle lengthening in the soleus muscle was measured using ultrasonography. In addition, the amplitude of the short latency stretch reflex in the soleus muscle was also measured.Results:As angular velocity increased, the amplitude of the stretch reflex and velocity of fascicle lengthening significantly increased (both p<0.001). For each trial in all subjects, the amplitude of the stretch reflex was not correlated with the velocity of fascicle lengthening at any of the angular velocities.Conclusion:In conclusion, the stretch reflex size is not related to the fascicle behavior in each trial.  相似文献   

10.

Study objectives

This study tries to assess the endothelial function in vivo using flow-mediated dilatation (FMD) and several biomarkers of endothelium formation/restoration and damage in patients with obstructive sleep apnoea (OSA) syndrome at baseline and after three months with CPAP therapy.

Design

Observational study, before and after CPAP therapy.

Setting and Patients

We studied 30 patients with apnoea/hypopnoea index (AHI) >15/h that were compared with themselves after three months of CPAP therapy. FMD was assessed non-invasively in vivo using the Laser-Doppler flowmetry. Circulating cell-free DNA (cf-DNA) and microparticles (MPs) were measured as markers of endothelial damage and the vascular endothelial growth factor (VEGF) was determined as a marker of endothelial restoration process.

Measurements and results

After three month with CPAP, FMD significantly increased (1072.26 ± 483.21 vs. 1604.38 ± 915.69 PU, p< 0.005) cf-DNA and MPs significantly decreased (187.93 ± 115.81 vs. 121.28 ± 78.98 pg/ml, p<0.01, and 69.60 ± 62.60 vs. 39.82 ± 22.14 U/μL, p<0.05, respectively) and VEGF levels increased (585.02 ± 246.06 vs. 641.11 ± 212.69 pg/ml, p<0.05). These changes were higher in patients with more severe disease. There was a relationship between markers of damage (r = -0.53, p<0.005) but not between markers of damage and restoration, thus suggesting that both types of markers should be measured together.

Conclusions

CPAP therapy improves FMD. This improvement may be related to an increase of endothelial restoration process and a decrease of endothelial damage.  相似文献   

11.

Introduction

First/Second-hand cigarette-smoke (FHS/SHS) exposure weakens immune defenses inducing chronic obstructive pulmonary disease (COPD) but the underlying mechanisms are not fully understood. Hence, we evaluated if SHS induced changes in membrane/lipid-raft (m-/r)-CFTR (cystic fibrosis transmembrane conductance regulator) expression/activity is a potential mechanism for impaired bacterial phagocytosis in COPD.

Methods

RAW264.7 murine macrophages were exposed to freshly prepared CS-extract (CSE) containing culture media and/or Pseudomonas-aeruginosa-PA01-GFP for phagocytosis (fluorescence-microscopy), bacterial survival (colony-forming-units-CFU), and immunoblotting assays. The CFTR-expression/activity and lipid-rafts were modulated by transient-transfection or inhibitors/inducers. Next, mice were exposed to acute/sub-chronic-SHS or room-air (5-days/3-weeks) and infected with PA01-GFP, followed by quantification of bacterial survival by CFU-assay.

Results

We investigated the effect of CSE treatment on RAW264.7 cells infected by PA01-GFP and observed that CSE treatment significantly (p<0.01) inhibits PA01-GFP phagocytosis as compared to the controls. We also verified this in murine model, exposed to acute/sub-chronic-SHS and found significant (p<0.05, p<0.02) increase in bacterial survival in the SHS-exposed lungs as compared to the room-air controls. Next, we examined the effect of impaired CFTR ion-channel-activity on PA01-GFP infection of RAW264.7 cells using CFTR172-inhibitor and found no significant change in phagocytosis. We also similarly evaluated the effect of a CFTR corrector-potentiator compound, VRT-532, and observed no significant rescue of CSE impaired PA01-GFP phagocytosis although it significantly (p<0.05) decreases CSE induced bacterial survival. Moreover, induction of CFTR expression in macrophages significantly (p<0.03) improves CSE impaired PA01-GFP phagocytosis as compared to the control. Next, we verified the link between m-/r-CFTR expression and phagocytosis using methyl-β-cyclodextran (CD), as it is known to deplete CFTR from membrane lipid-rafts. We observed that CD treatment significantly (p<0.01) inhibits bacterial phagocytosis in RAW264.7 cells and adding CSE further impairs phagocytosis suggesting synergistic effect on CFTR dependent lipid-rafts.

Conclusion

Our data suggest that SHS impairs bacterial phagocytosis by modulating CFTR dependent lipid-rafts.  相似文献   

12.

[Purpose]

The purpose of this study was to examine the effect of a single bout pilates exercise on mRNA expression of bone metabolic cytokines in elderly osteopenia women.

[Methods]

We selected 11 people of elderly osteopenia women and loaded a single bout pilates exercise about RPE 10-14 level. The blood samples were collected before, immediately after and 60 minute after pilates exercise, then examined calcium metabolic markers in serum and extracted peripheral blood mononuclear cell (PBMC) from whole blood and confirmed mRNA expression of bone metabolic cytokines from PBMC. To clarify the changes during exercise, we designed repeated measure ANOVA as the control group to perform blood sampling without exercise.

[Results]

As a result, serum P showed significant interaction effect between group and time (p<.001), the pilates exercise group decreased about 9% at immediately after exercise and 13% during recovery after exercise (p<.05), while the control group showed a tendency to increase. Serum CK also showed a significant interaction between group and time (p<.05), the pilates group significantly increased at immediately after exercise and during recovery after exercise (p<.05) but the control group didn’t have changes. TNF-α and IL-6 mRNA expression in PBMC was significantly increased in the pilates group (p<.01, p<.05), although INF-γ mRNA expression didn’t show statistically significant difference, it tended to increase in the pilates group (NS).

[Conclusion]

These results suggested that a single bout pilates exercise of elderly osteopenia women cause hypophosphatemia with temporary muscle damage, and it leading high turnover bone metabolic state with to activate both of bone formation and bone resorption.  相似文献   

13.
Objectives:Previous studies showed that vibration foam rolling (VFR) on damaged muscles improves muscle soreness and range of motion (ROM). VFR intervention can also increase the ROM and pain pressure threshold (PPT) in the non-rolling side, known as a cross-education effect. However, this is not clear for the non-rolling side. Therefore, this study aimed to investigate the cross-education effects of VFR intervention on ROM, muscle soreness, and PPT in eccentrically damaged muscles.Methods:Participants were sedentary healthy male volunteers (n=14, 21.4±0.7 y) who performed eccentric exercise of the knee extensors with the dominant leg and received 90-s VFR intervention of the quadriceps at the nondamaged side 48 h after the eccentric exercise. The dependent variables were measured before the exercise (baseline), before (preintervention), and after VFR intervention (postintervention) 48 h after the eccentric exercise. The Bonferroni post hoc test was used to determine the differences between baseline, preintervention, and postintervention.Results:Results showed that the VFR intervention on the nondamaged side 48 h after the eccentric exercise improved significantly (p<0.05) the knee flexion ROM, muscle soreness at palpation, and PPT compared to baseline.Conclusion:VFR intervention on the nondamaged side can recover ROM and muscle soreness in eccentrically damaged muscles.  相似文献   

14.
PurposeThis study investigated neuromuscular fatigue following high versus low-intensity eccentric exercise corresponding to the same amount of work.MethodsTen volunteers performed two eccentric exercises of the elbow flexors: a high-intensity versus a low-intensity exercise. Maximal voluntary contraction torque and surface electromyography of the biceps brachii muscle were recorded before, immediately and 48 h after exercises. Maximal voluntary activation level, neural (M-wave) and contractile (muscular twitch) properties of the biceps brachii muscle were analysed using electrical stimulation techniques.ResultsMaximal voluntary contraction torque was significantly (P < 0.01) reduced immediately and 48 h after exercise but the reduction was not different between the two conditions. Electromyography associated with maximal voluntary contraction significantly decreased (P < 0.05) immediately and 48 h after exercise for both conditions while maximal voluntary activation level was only significantly reduced immediately after the high-intensity exercise. Peak twitch alterations were observed immediately and 48 h after exercise for both conditions while M-wave did not change.ConclusionHigh and low-intensity eccentric exercises with the same amount of work induced the same reduction in maximal strength capacities of the biceps brachii muscles. The magnitude of peripheral and central fatigue was very similar in both conditions.  相似文献   

15.

Background and Objectives

Cladribine is a cytotoxic drug which ameliorates the clinical course of relapsing-remitting multiple sclerosis. In addition to cytotoxicity, the mode of action may include immunomodulatory mechanisms. This in vitro study was designed to investigate cladribine’s effects on cell function after the removal of cladribine to distinguish cytotoxic versus immunomodulatory effects.

Methods

Cells were incubated in the absence or presence of cladribine (1×10-8 M to 1×10-5 M) for 72 h. Cladribine was removed from the cell culture and surviving peripheral blood mononuclear cells were cultured up to 58 days to determine the immunomodulatory effects of cladribine on cell function (e.g., proliferation and cytokine release).

Results

In the long-term, brief cladribine exposure did not impair the proliferation of surviving peripheral blood mononuclear cells. However, it induced an anti-inflammatory shift in the cytokine milieu with significantly enhanced release of IL-4 (Days 9 and 44, p<0.01; Day 58, p<0.05) and IL-5 (Day 9, p<0.01), resulting in an increased IL-4/INF-gamma ratio (Days 9 and 44, p<0.01; Day 58, p<0.05). Additionally, a trend towards an increased IL-10 production was observed. No changes were found in the production of IFN-gamma, TNF-alpha, IL-6, IL-8, IL-17A, IL-23 or NGF-beta.

Conclusions

In vitro cladribine exposure induces a sustained anti-inflammatory shift in the cytokine profile of surviving peripheral blood mononuclear cells. This immunomodulatory action might contribute to cladribine’s beneficial effects in the treatment of multiple sclerosis.  相似文献   

16.
Objective:This study aims to investigate the effect of 8-week whole-body vibration (WBV) added to conventional training on muscular architecture, dynamic muscle strength and physical performance compared to controls in young basketball players.Methods:Sixteen young basketball players between the ages of 14-16 years were randomly assigned to whole body vibration group (VG) or control group (CG). Both groups were trained with a conventional program. Pennation angle (PeA), fascicle length and muscle thickness of Rectus Femoris (RF) and Vastus lateralis were measured by ultrasonography. Isokinetic dynamic muscle testing at 180 °/s and 60°/s, squat jump (SJ) and flexibility were evaluated before and after 8 weeks of training programs. Primary outcome measure was the fascicle length.Results:Fascicle length of RF, SJ height and flexibility increased significantly within VG compared to pretraining (p<0.05). SJ height increased in VG compared to CG significantly following training (p<0.05). PeA, fascicle length, muscle thicknesses, strength and flexibility did not differ between groups.Conclusion:Eight weeks of WBV training improved fascicle length of RF, SJ height, and flexibility compared to pre-training. Addition of WBV to conventional training did not cause improvement in muscle architecture, strength and flexibility compared to conventional training alone.  相似文献   

17.
We examined the temporal changes of isokinetic strength performance of knee flexor (KF) and extensor (KE) strength after a football match. Players were randomly assigned to a control (N = 14, participated only in measurements and practices) or an experimental group (N = 20, participated also in a football match). Participants trained daily during the two days after the match. Match and training overload was monitored with GPS devices. Venous blood was sampled and muscle damage was assessed pre-match, post-match and at 12h, 36h and 60h post-match. Isometric strength as well as eccentric and concentric peak torque of knee flexors and extensors in both limbs (dominant and non-dominant) were measured on an isokinetic dynamometer at baseline and at 12h, 36h and 60h after the match. Functional (KFecc/KEcon) and conventional (KFcon/KEcon) ratios were then calculated. Only eccentric peak torque of knee flexors declined at 60h after the match in the control group. In the experimental group: a) isometric strength of knee extensors and knee flexors declined (P<0.05) at 12h (both limbs) and 36h (dominant limb only), b) eccentric and concentric peak torque of knee extensors and flexors declined (P<0.05) in both limbs for 36h at 60°/s and for 60h at 180°/s with eccentric peak torque of knee flexors demonstrating a greater (P<0.05) reduction than concentric peak torque, c) strength deterioration was greater (P<0.05) at 180°/s and in dominant limb, d) the functional ratio was more sensitive to match-induced fatigue demonstrating a more prolonged decline. Discriminant and regression analysis revealed that strength deterioration and recovery may be related to the amount of eccentric actions performed during the match and athletes'' football-specific conditioning. Our data suggest that recovery kinetics of knee flexor and extensor strength after a football match demonstrate strength, limb and velocity specificity and may depend on match physical overload and players'' physical conditioning level.  相似文献   

18.

Introduction

This study investigated the angiogenic properties of liraglutide in vitro and in vivo and the mechanisms involved, with a focus on Hypoxia Inducible Factor-1α (HIF-1α) and mammalian target of rapamycin (mTOR).

Materials and Methods

Rat pancreatic islets were incubated in vitro with 10 μmol/L of liraglutide (Lira) for 12, 24 and 48 h. Islet viability was studied by fluorescein diacetate/propidium iodide staining and their function was assessed by glucose stimulation. The angiogenic effect of liraglutide was determined in vitro by the measure of vascular endothelial growth factor (VEGF) secretion using enzyme-linked immunosorbent assay and by the evaluation of VEGF and platelet-derived growth factor-α (PDGFα) expression with quantitative polymerase chain reaction technic. Then, in vitro and in vivo, angiogenic property of Lira was evaluated using immunofluorescence staining targeting the cluster of differentiation 31 (CD31). To understand angiogenic mechanisms involved by Lira, HIF-1α and mTOR activation were studied using western blotting. In vivo, islets (1000/kg body-weight) were transplanted into diabetic (streptozotocin) Lewis rats. Metabolic control was assessed for 1 month by measuring body-weight gain and fasting blood glucose.

Results

Islet viability and function were respectively preserved and enhanced (p<0.05) with Lira, versus control. Lira increased CD31-positive cells, expression of VEGF and PDGFα (p<0.05) after 24 h in culture. Increased VEGF secretion versus control was also observed at 48 h (p<0.05). Moreover, Lira activated mTOR (p<0.05) signalling pathway. In vivo, Lira improved vascular density (p<0.01), body-weight gain (p<0.01) and reduced fasting blood glucose in transplanted rats (p<0.001).

Conclusion

The beneficial effects of liraglutide on islets appeared to be linked to its angiogenic properties. These findings indicated that glucagon-like peptide-1 analogues could be used to improve transplanted islet revascularisation.  相似文献   

19.

Background

Autologous conditioned serum (ACS) is an autologous blood product that has shown efficacy against knee osteoarthritis (OA) in randomized controlled trials. However, there are few reports of its effectiveness in everyday practice. Here, we report clinical efficacy results from a two-year prospective observational study of patients with highly symptomatic knee OA who received ACS in conjunction with physiotherapy.

Methods

118 patients with unilateral knee OA (Kellgren-Lawrence grades I–IV), who were candidates for surgery but instead chose conservative treatment, were treated with a combination of four intra-articular injections of ACS (2 mL each) once weekly over four weeks and subsequent physiotherapy applied 4 weeks after ACS injection. Main endpoints of the study were pain (Numeric Rating Scale [NRS]) assessed at 0, 3, 6, 12 and 24 months, and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) global score, assessed at 0 and 24 months. The effect size (Cohen’s d) was calculated for pain and WOMAC outcomes, with effect sizes >0.8 considered large.

Results

By 3 months, there were significant improvements in pain (NRS) from baseline (-63.0%, p<0.001), which were maintained over 24 months. Mean WOMAC global score was reduced at 24 months compared to baseline (-56.9%, p<0.001), as were WOMAC subscores of pain (-86.0%, p<0.001) and function (-51.3%, p<0.001). Effect sizes for pain (>5) and WOMAC improvement (8.0–13.6) were very large. Only one patient received total knee joint replacement during the study. Clinical improvement did not correlate with gender, age, Kellgren-Lawrence grade, or body mass index.

Conclusions

Treatment with ACS and physiotherapy produced a rapid decline in pain, which was sustained for the entire two years of the study. This was accompanied by a large improvement in WOMAC scores at two years. These results confirm that ACS combined with physiotherapy is an effective treatment for OA of the knee.  相似文献   

20.

Background

Nonalcoholic fatty liver disease is associated with a risk of coronary artery disease (e.g., diabetes mellitus, dyslipidemia, metabolic syndrome). We evaluated whether nonalcoholic hepatic steatosis is associated with high-risk plaques as assessed by multidetector computed tomography (CT).

Methods

This retrospective study involved 414 participants suspected of having coronary artery disease. Nonalcoholic hepatic steatosis was defined as a liver-to-spleen fat ratio of <1.0 and the presence and appropriate characteristics of coronary-artery plaques as assessed by coronary CT angiography. High-risk plaques were identified, as were low-density plaques, positive remodeling, and spotty calcification.

Results

Compared with patients who did not have nonalcoholic hepatic steatosis, patients with nonalcoholic hepatic steatosis had more low-density plaques (21% vs. 44%, p<0.01), positive remodeling (41% vs. 58%, p = 0.01), and spotty calcification (12% vs. 36%, p<0.01). The number of high-risk plaques in patients with nonalcoholic hepatic steatosis was greater than in those without nonalcoholic hepatic steatosis (p<0.01). Patients with nonalcoholic hepatic steatosis were more likely to have high-risk plaques than were those with only an elevated level of visceral adipose tissue (≥86 cm2; 35% vs. 16%, p<0.01). Multivariate analyses that included nonalcoholic hepatic steatosis, amount of visceral adipose tissue, and the presence/absence of traditional risk factors demonstrated that nonalcoholic hepatic steatosis was an independent predictor of high-risk plaques (odds ratio: 4.60; 95% confidence interval: 1.94–9.07, p<0.01).

Conclusions

Diagnosis of nonalcoholic hepatic steatosis may be of value when assessing the risk of coronary artery disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号