首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DC—SIGN(DC—specificICAM-3-grabbingnonintegrin,CD209)系C型凝集素家族主要成员,具有模式识别受体和介导细胞黏附功能。DC-SIGN可通过分子中凝集素糖识别域,识别多种病原体的外源性和机体内源性抗原以及细胞表面黏附分子(ICAM-2,3)中甘露糖或岩藻糖的糖基团,并对话协调Toll样受体等,介导树突状细胞(DC)等参与病原体或肿瘤细胞的免疫逃逸;也可调节DC黏附迁移并在炎症启动中激活初始T细胞免疫应答。因而,作为天然免疫分子介导基础,DC.SIGN在DC参与的感染性和炎症性疾病等的正负免疫调节中发挥了关键作用。目前有关DC.SIGN免疫调节效应涉及的信号转导以及分子表达调控机制尚未完全阐明,就相关进展作一综述。  相似文献   

2.
Recently, spaCBA-encoded pili on the cell surface of Lactobacillus rhamnosus GG were identified to be key molecules for binding to human intestinal mucus and Caco-2 intestinal epithelial cells. Here, we investigated the role of the SpaCBA pilus of L. rhamnosus GG in the interaction with macrophages in vitro by comparing the wild type with surface mutants. Our results show that SpaCBA pili play a significant role in the capacity for adhesion to macrophages and also promote bacterial uptake by these phagocytic cells. Interestingly, our data suggest that SpaCBA pili also mediate anti-inflammatory effects by induction of interleukin-10 (IL-10) mRNA and reduction of interleukin-6 (IL-6) mRNA in a murine RAW 264.7 macrophage cell line. These pili appear to mediate these effects indirectly by promoting close contact with the macrophages, facilitating the exertion of anti-inflammatory effects by other surface molecules via yet unknown mechanisms. Blockage of complement receptor 3 (CR3), previously identified to be a receptor for streptococcal pili, significantly decreased the uptake of pilus-expressing strains in RAW 264.7 cells, while the expression of IL-10 and IL-6 mRNA by these macrophages was not affected by this blocking. On the other hand, blockage of Toll-like receptor 2 (TLR2) significantly reduced the expression of IL-6 mRNA irrespective of the presence of pili.  相似文献   

3.
A new C-type lectin-like gene encodes 293 amino acids and maps to chromosome 19p13.3 adjacent to the previously described C-type lectin genes, CD23, dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), and DC-SIGN-related protein (DC-SIGNR). The four genes form a tight cluster in an insert size of 105 kb and have analogous genomic structures. The new C-type lectin-like molecule, designated liver and lymph node sinusoidal endothelial cell C-type lectin (LSECtin), is a type II integral membrane protein of approximately 40 kDa in size with a single C-type lectin-like domain at the COOH terminus, closest in homology to DC-SIGNR, DC-SIGN, and CD23. LSECtin mRNA was only expressed in liver and lymph node among 15 human tissues tested, intriguingly neither expressed on hematopoietic cell lines nor on monocyte-derived dendritic cells (DCs). Moreover, LSECtin is expressed predominantly by sinusoidal endothelial cells of human liver and lymph node and co-expressed with DC-SIGNR. LSECtin binds to mannose, GlcNAc, and fucose in a Ca(2+)-dependent manner but not to galactose. Our results indicate that LSECtin is a novel member of a family of proteins comprising CD23, DC-SIGN, and DC-SIGNR and might function in vivo as a lectin receptor.  相似文献   

4.
Lactobacillus rhamnosus GG, a probiotic with good survival capacity in the human gut, has well-documented adhesion properties and health effects. Recently, spaCBA-encoded pili that bind to human intestinal mucus were identified on its cell surface. Here, we report on the phenotypic analysis of a spaCBA pilus knockout mutant in comparison with the wild type and other adhesin mutants. The SpaCBA pilus of L. rhamnosus GG showed to be key for efficient adherence to the Caco-2 intestinal epithelial cell (IEC) line and biofilm formation. Moreover, the spaCBA mutant induces an elevated level of interleukin-8 (IL-8) mRNA in Caco-2 cells compared to the wild type, possibly involving an interaction of lipoteichoic acid with Toll-like receptor 2. In contrast, an L. rhamnosus GG mutant without exopolysaccharides but with an increased exposure of pili leads to the reduced expression of IL-8. Using Transwells to partition bacteria from Caco-2 cells, IL-8 induction is blocked completely regardless of whether wild-type or mutant L. rhamnosus GG cells are used. Taken together, our data suggest that L. rhamnosus GG SpaCBA pili, while promoting strong adhesive interactions with IECs, have a functional role in balancing IL-8 mRNA expression induced by surface molecules such as lipoteichoic acid.  相似文献   

5.
Interactions between dendritic cells (DCs) and Mycobacterium tuberculosis, the etiological agent of tuberculosis, most likely play a key role in anti-mycobacterial immunity. We have recently shown that M. tuberculosis binds to and infects DCs through ligation of the DC-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) and that M. tuberculosis mannose-capped lipoarabinomannan (ManLAM) inhibits binding of the bacilli to the lectin, suggesting that ManLAM might be a key DC-SIGN ligand. In the present study, we investigated the molecular basis of DC-SIGN ligation by LAM. Contrary to what was found for slow growing mycobacteria, such as M. tuberculosis and the vaccine strain Mycobacterium bovis bacillus Calmette-Guérin, our data demonstrate that the fast growing saprophytic species Mycobacterium smegmatis hardly binds to DC-SIGN. Consistent with the former finding, we show that M. smegmatis-derived lipoarabinomannan, which is capped by phosphoinositide residues (PILAM), exhibits a limited ability to inhibit M. tuberculosis binding to DC-SIGN. Moreover, using enzymatically demannosylated and chemically deacylated ManLAM molecules, we demonstrate that both the acyl chains on the ManLAM mannosylphosphatidylinositol anchor and the mannooligosaccharide caps play a critical role in DC-SIGN-ManLAM interaction. Finally, we report that DC-SIGN binds poorly to the PILAM and uncapped AraLAM-containing species Mycobacterium fortuitum and Mycobacterium chelonae, respectively. Interestingly, smooth colony-forming Mycobacterium avium, in which ManLAM is capped with single mannose residues, was also poorly recognized by the lectin. Altogether, our results provide molecular insight into the mechanisms of mycobacteria-DC-SIGN interaction, and suggest that DC-SIGN may act as a pattern recognition receptor and discriminate between Mycobacterium species through selective recognition of the mannose caps on LAM molecules.  相似文献   

6.
Our recent studies have shown that the dendritic cell-specific ICAM nonintegrin CD209 (DC-SIGN) specifically binds to the core LPS of Escherichia coli K12 (E. coli), promoting bacterial adherence and phagocytosis. In this current study, we attempted to map the sites within the core LPS that are directly involved in LPS-DC-SIGN interaction. We took advantage of four sets of well-defined core LPS mutants, which are derived from E. coli, Salmonella enterica serovar Typhimurium, Neisseria gonorrhoeae, and Haemophilus ducreyi and determined interaction of each of these four sets with DC-SIGN. Our results demonstrated that N-acetylglucosamine (GlcNAc) sugar residues within the core LPS in these bacteria play an essential role in targeting the DC-SIGN receptor. Our results also imply that DC-SIGN is an innate immune receptor and the interaction of bacterial core LPS and DC-SIGN may represent a primeval interaction between Gram-negative bacteria and host phagocytic cells.  相似文献   

7.
Schistosoma mansoni soluble egg antigens (SEAs) are crucially involved in modulating the host immune response to infection by S. mansoni. We report that human dendritic cells bind SEAs through the C-type lectin dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN). Monoclonal antibodies against the carbohydrate antigens Lewisx (Lex) and GalNAcbeta1-4(Fucalpha1-3)GlcNAc (LDNF) inhibit binding of DC-SIGN to SEAs, suggesting that these glycan antigens may be critically involved in binding. In a solid-phase adhesion assay, DC-SIGN-Fc binds polyvalent neoglycoconjugates that contain the Lex antigen, whereas no binding was observed to Galbeta1-4GlcNAc, and binding to neoglycoconjugates containing only alpha-fucose or oligosaccharides with a terminal alpha1-2-linked fucose is low. These data indicate that binding of DC-SIGN to Lex antigen is fucose-dependent and that adjacent monosaccharides and/or the anomeric linkage of the fucose are important for binding activity. Previous studies have shown that DC-SIGN binds HIV gp120 that contains high-mannose-type N-glycans. Site-directed mutagenesis within the carbohydrate recognition domain (CRD) of DC-SIGN demonstrates that amino acids E324 and E347 are involved in binding to HIV gp120, Lex, and SEAs. By contrast, mutation of amino acid Val351 abrogates binding to SEAs and Lex but not HIV gp120. These data suggest that DC-SIGN recognizes these ligands through different (but overlapping) regions within its CRD. Our data imply that DC-SIGN not only is a pathogen receptor for HIV gp120 but may also function in pathogen recognition by interaction with the carbohydrate antigens Lex and possibly LDNF, which are found on important human pathogens, such as schistosomes and the bacterium Helicobacter pylori.  相似文献   

8.
Lactobacillus rhamnosus GG is a human intestinal isolate that has been studied intensively because of its probiotic properties. We have previously shown that L. rhamnosus GG produces proteinaceous pili that earlier had been observed only in Gram-positive pathogens (M. Kankainen et al., Proc. Natl. Acad. Sci. U. S. A. 106:17193-17198, 2009). These pili were found to be encoded by the spaCBA gene cluster, and the pilus-associated SpaC pilin was shown to confer on the cells a mucus-binding ability. In addition to the spaCBA cluster, another putative pilus cluster, spaFED, was predicted from the L. rhamnosus GG genome sequence. Herein, we show that only SpaCBA pili are produced by L. rhamnosus, and we describe a detailed analysis of cell wall-associated and affinity-purified SpaCBA pili by Western blotting and immunogold electron microscopy. Our results indicate that SpaCBA pili are heterotrimeric protrusions with a SpaA subunit as the shaft-forming major pilin. Only a few SpaB subunits could be observed in pilus fibers. Instead, SpaB pilins were found at pilus bases, as assessed by immunogold double labeling of thin sections of cells, suggesting that SpaB is involved in the termination of pilus assembly. The SpaC adhesin was present along the whole pilus length at numbers nearly equaling those of SpaA. The relative amount and uniform distribution of SpaC within pili not only makes it possible to exert both long-distance and intimate contact with host tissue but also provides mucus-binding strength, which explains the prolonged intestinal residency times observed for L. rhamnosus GG compared to that of nonpiliated lactobacilli.  相似文献   

9.
Fucosylated glycans on pathogens are known to shape the immune response through their interaction with pattern recognition receptors, such as C-type lectin receptors (CLRs), on dendritic cells (DCs). Similar fucosylated structures are also commonly found in a variety of allergens, but their functional significance remains unclear. To test a hypothesis that allergen-associated glycans serve as the molecular patterns in functional interaction with CLRs, an enzyme-linked immunosorbent assay-based binding assay was performed to determine the binding activity of purified allergens and allergen extracts. THP-1 cells and monocyte-derived DCs (MDDCs) were investigated as a model for testing the functional effects of allergen-CLR interaction using enzyme-linked immunosorbent assay, Western blotting, and flow cytometry. Significant and saturable bindings of allergens and allergen extracts with variable binding activities to DC-specific ICAM3-grabbing non-integrin (DC-SIGN) and its related receptor, L-SIGN, were found. These include bovine serum albumin coupled with a common glycoform (fucosylated glycan lacking the α1,3-linked mannose) of allergens and a panel of purified allergens, including BG60 (Cyn dBG-60; Bermuda grass pollen) and Der p2 (house dust mite). The binding activity was calcium-dependent and inhibitable by fucose and Lewis-x trisaccharides (Lex). In THP-1 cells and human MDDCs, BG60-DC-SIGN interaction led to the activation of Raf-1 and ERK kinases and the induction of tumor necrosis factor-α expression. This effect could be blocked, in part, by Raf-1 inhibitor or anti-DC-SIGN antibodies and was significantly reduced in cells with DC-SIGN knockdown. These results suggest that allergens are able to interact with DC-SIGN and induce tumor necrosis factor-α expression in MDDCs via, in part, Raf-1 signaling pathways.  相似文献   

10.
11.
During infection with the blood fluke Schistosoma mansoni, glycan motifs present on glycoproteins of the parasite’s eggs mediate immunomodulatory effects on the host. The recognition of these glycan motifs is primarily mediated by C-type lectin receptors on dendritic cells and other cells of the immune system. However, it is not yet known which individual glycoproteins interact with the different C-type lectin receptors, and which structural components are involved. Here we investigated the structural basis of the binding of two abundant egg antigens, kappa-5 and IPSE/α1, by the C-type lectin receptor dendritic cell-specific ICAM3-grabbing non-integrin, macrophage galactose-type lectin and mannose receptor. In the natural soluble form, the secretory egg glycoprotein IPSE/α1 interacts with dendritic cells mainly via mannose receptors. Surprisingly, in plate-based assays mannose receptors preferentially bound to mannose conjugates, while in cell-based assays, IPSE/α1 is bound via the fucosylated Galβ1-4(Fucα1-3)GlcNAc (LeX) motif on diantennary N-glycans. Kappa-5, in contrast, is bound by dendritic cells via all three C-type lectin receptors studied and for a minor part also via other, non-C-type lectin receptors. Kappa-5 interacts with macrophage galactose-type lectins via the GalNAcβ1-4GlcNAc antenna present on its triantennary N-glycans, as well as the GalNAcβ1-4(Fucα1-3)GlcNAc antennae present on a minor N-glycan subset. Dendritic cell-specific ICAM3-grabbing non-integrin binding of kappa-5 was mediated via the GalNAcβ1-4(Fucα1-3)GlcNAc antennae, whereas binding of mannose receptors may involve either GalNAcβ1-4(Fucα1-3)GlcNAc antennae or the fucosylated and xylosylated chitobiose core. This study provides a molecular and structural basis for future studies of the interaction between C-type lectin receptors and other soluble egg antigen glycoproteins and their effects on the host immune response.  相似文献   

12.
The arenavirus Lassa virus (LASV) causes a severe hemorrhagic fever with high mortality in humans. Antigen-presenting cells, in particular dendritic cells (DCs), are early and preferred targets of LASV, and their productive infection contributes to the virus-induced immunosuppression observed in fatal disease. Here, we characterized the role of the C-type lectin DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN) in LASV entry into primary human DCs using a chimera of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) expressing the LASV glycoprotein (rLCMV-LASVGP). We found that differentiation of human primary monocytes into DCs enhanced virus attachment and entry, concomitant with the upregulation of DC-SIGN. LASV and rLCMV-LASVGP bound to DC-SIGN via mannose sugars located on the N-terminal GP1 subunit of LASVGP. We provide evidence that DC-SIGN serves as an attachment factor for rLCMV-LASVGP in monocyte-derived immature dendritic cells (MDDC) and can accelerate the capture of free virus. However, in contrast to the phlebovirus Uukuniemi virus (UUKV), which uses DC-SIGN as an authentic entry receptor, productive infection with rLCMV-LASVGP was less dependent on DC-SIGN. In contrast to the DC-SIGN-mediated cell entry of UUKV, entry of rLCMV-LASVGP in MDDC was remarkably slow and depended on actin, indicating the use of different endocytotic pathways. In sum, our data reveal that DC-SIGN can facilitate cell entry of LASV in human MDDC but that its role seems distinct from the function as an authentic entry receptor reported for phleboviruses.  相似文献   

13.
DC-SIGN is an immune C-type lectin that is expressed on both immature and mature dendritic cells associated with peripheral and lymphoid tissues in humans. It is a pattern recognition receptor that binds to several pathogens including HIV-1, Ebola virus, Mycobacterium tuberculosis, Candida albicans, Helicobacter pylori, and Schistosoma mansoni. Evidence is now mounting that DC-SIGN also recognizes endogenous glycoproteins, and that such interactions play a major role in maintaining immune homeostasis in humans and mice. Autoantigens (neoantigens) are produced for the first time in the human testes and other organs of the male urogenital tract under androgenic stimulus during puberty. Such antigens trigger autoimmune orchitis if the immune response is not tightly regulated within this system. Endogenous ligands for DC-SIGN could play a role in modulating such responses. Human seminal plasma glycoproteins express a high level of terminal Lewis(x) and Lewis(y) carbohydrate antigens. These epitopes react specifically with the lectin domains of DC-SIGN. However, because the expression of these sequences is necessary but not sufficient for interaction with DC-SIGN, this study was undertaken to determine if any seminal plasma glycoproteins are also endogenous ligands for DC-SIGN. Glycoproteins bearing terminal Lewis(x) and Lewis(y) sequences were initially isolated by lectin affinity chromatography. Protein sequencing established that three tumor biomarker glycoproteins (clusterin, galectin-3 binding glycoprotein, prostatic acid phosphatase) and protein C inhibitor were purified by using this affinity method. The binding of DC-SIGN to these seminal plasma glycoproteins was demonstrated in both Western blot and immunoprecipitation studies. These findings have confirmed that human seminal plasma contains endogenous glycoprotein ligands for DC-SIGN that could play a role in maintaining immune homeostasis both in the male urogenital tract and the vagina after coitus.  相似文献   

14.
DC-SIGN (dendritic cell specific intracellular adhesion molecule 3 grabbing non-integrin) or CD209 is a type II transmembrane protein and one of several C-type lectin receptors expressed by dendritic cell subsets, which bind to high mannose glycoproteins promoting their endocytosis and potential degradation. DC-SIGN also mediates attachment of HIV to dendritic cells and binding to this receptor can subsequently lead to endocytosis or enhancement of CD4/CCR5-dependent infection. The latter was proposed to be facilitated by an interaction between DC-SIGN and CD4. Endocytosis of HIV virions does not necessarily lead to their complete degradation. A proportion of the virions remain infective and can be later presented to T cells mediating their infection in trans. Previously, the extracellular domain of recombinant DC-SIGN has been shown to assemble as tetramers and in the current study we use a short range covalent cross-linker and show that DC-SIGN exists as tetramers on the surface of immature monocyte-derived dendritic cells. There was no evidence of direct binding between DC-SIGN and CD4 either by cross-linking or by fluorescence resonance energy transfer measurements suggesting that there is no constitutive association of the majority of these proteins in the membrane. Importantly we also show that the tetrameric complexes, in contrast to DC-SIGN monomers, bind with high affinity to high mannose glycoproteins such as mannan or HIV gp120 suggesting that such an assembly is required for high affinity binding of glycoproteins to DC-SIGN, providing the first direct evidence that DC-SIGN tetramers are essential for high affinity interactions with pathogens like HIV.  相似文献   

15.
Lactobacillus plantarum can exert additional probiotic effects via regulation of human immune system. However, the direct interaction between probiotics and the receptors of immune cells still needs to be further studied. To identify the receptor of dendritic cells during the interaction with L. plantarum. Dendritic cells were pretreated with L. plantarum and the antibody to dendritic cells specific intercellular adhesion molecule-grabbing nonintegrin (DC-SIGN), toll like receptor (TLR)-2 and TLR-4. The maturation of immature dendritic cells, cytokine production, and modulation of T cells were studied by flow cytometry. Adherence between L. plantarum and dendritic cells were studied by ELISA, flow cytometry, and Western blot. L. plantarum could mature dendritic cells by up-regulating MHC-II and CD80 and CD86. Anti-inflammatory interlectin (IL)-10 and IL-6 was up-regulated and pro-inflammatory IL-12p70 was retro-regulated by L. plantarum. L. plantarum may interact with DC-SIGN and modulate of T to differentiate into IL-4 producing T cells. The interaction of L. plantarum and DC-SIGN and the biological effects could be blocked by EDTA and antibody to DC-SIGN. Effects of L. plantarum were concentration-dependent. L. plantarum could bind to DC-SIGN to improve DC maturation at different ratios, regulate the secretion of anti-inflammatory and pro-inflammatory cytokines, and induce the polarization of interlectin-4-producing T cells.  相似文献   

16.
17.
Dendritic cells are potent antigen-presenting cells that express several membrane lectins, including the mannose receptor and DC-SIGN (dendritic cell-specific ICAM-3-grabbing nonintegrin). To identify highly specific ligands for these dendritic cell receptors, oligosaccharides were converted into glycosynthons (Os1) and were used to prepare oligolysine-based glycoclusters, Os-[Lys(Os)]n-Ala-Cys-NH2. Clusters containing two to six dimannosides as well as clusters containing four or five pentasaccharides (Lewisa or Lewisx) or hexasaccharides (Lewisb) were synthesized. The thiol group of the appended cysteine residue allows easy tagging by a fluorescent probe or convenient substitution with an antigen. Surface plasmon resonance was used to determine the affinity of the different glycoclusters for purified mannose receptor and DC-SIGN, whereas flow cytometry and confocal microscopy analysis allowed assessment of cell uptake of fluoresceinyl-labeled glycoclusters. Dimannoside clusters are recognized by the mannose receptor with an affinity constant close to 106 liter.mol-1 but have a very low affinity for DC-SIGN (less than 104 liter x mol-1). Conversely, Lewis clusters have a higher affinity toward DC-SIGN than toward the mannose receptor. Dimannoside clusters are efficiently taken up by human dendritic cells as well as by rat fibroblasts expressing the mannose receptor but not by HeLa cells or rat fibroblasts expressing DC-SIGN; DC-SIGN-expressing cells take up Lewis clusters. The results suggest that ligands containing dimannoside clusters can be used specifically to target the mannose receptor, whereas ligands containing Lewis clusters will be targeted to DC-SIGN.  相似文献   

18.
Inflammatory mediators derived from arachidonic acid (AA) alter the function of dendritic cells (DC), but data regarding their biosynthesis resulting from stimulation of opsonic and nonopsonic receptors are scarce. To address this issue, the production of eicosanoids by human monocyte-derived DC stimulated via receptors involved in Ag recognition was assessed. Activation of FcgammaR induced AA release, short-term, low-grade PG biosynthesis, and IL-10 production, whereas zymosan, which contains ligands of both the mannose receptor and the human beta-glucan receptor dectin-1, induced a wider set of responses including cyclooxygenase 2 induction and biosynthesis of leukotriene C(4) and IL-12p70. The cytosolic phospholipase A(2) inhibitor pyrrolidine 1 completely inhibited AA release stimulated via all receptors, whereas the spleen tyrosine kinase (Syk) inhibitors piceatannol and R406 fully blocked AA release in response to immune complexes, but only partially blocked the effect of zymosan. Furthermore, anti-dectin-1 mAb partially inhibited the response to zymosan, and this inhibition was enhanced by mAb against DC-specific ICAM-3-grabbing nonintegrin (SIGN). Immunoprecipitation of DC lysates showed coimmunoprecipitation of DC-SIGN and dectin-1, which was confirmed using Myc-dectin-1 and DC-SIGN constructs in HEK293 cells. These data reveal a robust metabolism of AA in human DC stimulated through both opsonic and nonopsonic receptors. The FcgammaR route depends on the ITAM/Syk/cytosolic phospholipase A(2) axis, whereas the response to zymosan involves the interaction with the C-type lectin receptors dectin-1 and DC-SIGN. These findings help explain the distinct functional properties of DC matured by immune complexes vs those matured by beta-glucans.  相似文献   

19.
Gonorrhea is one of the most prevalent sexually transmitted diseases in the world. A naturally occurring variation of the terminal carbohydrates on the lipooligosaccharide (LOS) molecule correlates with altered disease states. Here, we investigated the interaction of different stable gonoccocal LOS phenotypes with human dendritic cells and demonstrate that each variant targets a different set of receptors on the dendritic cell, including the C-type lectins MGL and DC-SIGN. Neisseria gonorrhoeae LOS phenotype C constitutes the first bacterial ligand to be described for the human C-type lectin receptor MGL. Both MGL and DC-SIGN are locally expressed at the male and female genital area, the primary site of N. gonorrhoeae infection. We show that targeting of different C-type lectins with the N. gonorrhoeae LOS variants results in alterations in dendritic cell cytokine secretion profiles and the induction of distinct adaptive CD4+ T helper responses. Whereas N. gonorrhoeae variant A with a terminal N-acetylglucosamine on its LOS was recognized by DC-SIGN and induced significantly more IL-10 production, phenotype C, carrying a terminal N-acetylgalactosamine, primarily interacted with MGL and skewed immunity towards the T helper 2 lineage. Together, our results indicate that N. gonorrhoeae LOS variation allows for selective manipulation of dendritic cell function, thereby shifting subsequent immune responses in favor of bacterial survival.  相似文献   

20.
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 is a vaccine immunogen that can signal via several cell surface receptors. To investigate whether receptor biology could influence immune responses to gp120, we studied its interaction with human, monocyte-derived dendritic cells (MDDCs) in vitro. Gp120 from the HIV-1 strain JR-FL induced IL-10 expression in MDDCs from 62% of donors, via a mannose C-type lectin receptor(s) (MCLR). Gp120 from the strain LAI was also an IL-10 inducer, but gp120 from the strain KNH1144 was not. The mannose-binding protein cyanovirin-N, the 2G12 mAb to a mannose-dependent gp120 epitope, and MCLR-specific mAbs inhibited IL-10 expression, as did enzymatic removal of gp120 mannose moieties, whereas inhibitors of signaling via CD4, CCR5, or CXCR4 were ineffective. Gp120-stimulated IL-10 production correlated with DC-SIGN expression on the cells, and involved the ERK signaling pathway. Gp120-treated MDDCs also responded poorly to maturation stimuli by up-regulating activation markers inefficiently and stimulating allogeneic T cell proliferation only weakly. These adverse reactions to gp120 were MCLR-dependent but independent of IL-10 production. Since such mechanisms might suppress immune responses to Env-containing vaccines, demannosylation may be a way to improve the immunogenicity of gp120 or gp140 proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号