首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ras superfamily of small GTPases is a large family of switch-like proteins that control diverse cellular functions, and their deregulation is associated with multiple disease processes. When bound to GTP they adopt a conformation that interacts with effector proteins, whereas the GDP-bound state is generally biologically inactive. GTPase activating proteins (GAPs) promote hydrolysis of GTP, thus impeding the biological activity of GTPases, whereas guanine nucleotide exchange factors (GEFs) promote exchange of GDP for GTP and activate GTPase proteins. A number of methods have been developed to assay GTPase nucleotide hydrolysis and exchange, as well as the activity of GAPs and GEFs. The kinetics of these reactions are often studied with purified proteins and fluorescent nucleotide analogs, which have been shown to non-specifically impact hydrolysis and exchange. Most GAPs and GEFs are large multidomain proteins subject to complex regulation that is challenging to reconstitute in vitro. In cells, the activities of full-length GAPs or GEFs are typically assayed indirectly on the basis of nucleotide loading of the cognate GTPase, or by exploiting their interaction with effector proteins. Here, we describe a recently developed real-time NMR method to assay kinetics of nucleotide exchange and hydrolysis reactions by direct monitoring of nucleotide-dependent structural changes in an isotopically labeled GTPase. The unambiguous readout of this method makes it possible to precisely measure GAP and GEF activities from extracts of mammalian cells, enabling studies of their catalytic and regulatory mechanisms. We present examples of NMR-based assays of full-length GAPs and GEFs overexpressed in mammalian cells.  相似文献   

2.
Rho GTPases act as key regulators of cellular biochemistry by determining the timing, direction, and amplitude of signal transduction in a number of important pathways. The rate of activation of a GTPase-controlled reaction is limited by the rate of GTP binding to the Rho protein, and this, in turn, depends on the rate that GDP dissociates from the GTPase. The latter is controlled by the action of guanine nucleotide exchange factors (GEFs) that catalyze GDP-GTP exchange by increasing the rate of GDP dissociation. Here, the recently reported structural information for Rho GTPase-GEF complexes and the molecular basis for the specificity of their interactions are discussed. Underscoring the importance of regulating the Rho GTPase activation pathway, genetically unrelated proteins have evolved which complement or mimic the Dbl homology-Pleckstrin homology (DH-PH) domain-containing family of proteins in their ability to catalyze GDP-GTP exchange. In particular, the structure of the mammalian Cdc42 protein bound to the SopE protein from Salmonella typhimurium illustrates how two unrelated protein folds are able to carry out guanine nucleotide exchange by a remarkably similar mechanism. It will be interesting to see if this conservation of mechanism extends to a newly recognized class of GEFs related to the DOCK180 family.  相似文献   

3.
Cell migration is a highly regulated multistep process that requires the coordinated regulation of cell adhesion, protrusion, and contraction. These processes require numerous protein–protein interactions and the activation of specific signaling pathways. The Rho family of GTPases plays a key role in virtually every aspect of the cell migration cycle. The activation of Rho GTPases is mediated by a large and diverse family of proteins; the guanine nucleotide exchange factors (RhoGEFs). GEFs work immediately upstream of Rho proteins to provide a direct link between Rho activation and cell–surface receptors for various cytokines, growth factors, adhesion molecules, and G protein-coupled receptors. The regulated targeting and activation of RhoGEFs is essential to coordinate the migratory process. In this review, we summarize the recent advances in our understanding of the role of RhoGEFs in the regulation of cell migration.  相似文献   

4.
5.
6.
Monomeric GTPases of the Rho subfamily are important mediators of polar growth and NADPH (Nox) signaling in a variety of organisms. These pathways influence the ability of Claviceps purpurea to infect host plants. GTPase regulators contribute to the nucleotide loading cycle that is essential for proper functionality of the GTPases. Scaffold proteins gather GTPase complexes to facilitate proper function. The guanine nucleotide exchange factors (GEFs) CpCdc24 and CpDock180 activate GTPase signaling by triggering nucleotide exchange of the GTPases. Here we show that CpCdc24 harbors nucleotide exchange activity for both Rac and Cdc42 homologues. The GEFs partly share the cellular distribution of the GTPases and interact with the putative upstream GTPase CpRas1. Interaction studies show the formation of higher-order protein complexes, mediated by the scaffold protein CpBem1. Besides the GTPases and GEFs, these complexes also contain the GTPase effectors CpSte20 and CpCla4, as well as the regulatory protein CpNoxR. Functional characterizations suggest a role of CpCdc24 mainly in polarity, whereas CpDock180 is involved in stress tolerance mechanisms. These findings indicate the dynamic formation of small GTPase complexes and improve the model for GTPase-associated signaling in C. purpurea.  相似文献   

7.
RasGRP proteins--Ras-activating factors   总被引:1,自引:0,他引:1  
The Ras proteins, members of small GTP-binding protein family, are regulated through the exchange of GTP/GDP nucleotide. The activity of the Ras proteins is controlled by guanine nucleotide exchange factors (GEFs) and GTP-ase activating proteins (GAPs), which activate and inactivate G proteins respectively. Beside other, well known Ras-activating GEFs, the new class of such factors was recently described. RasGRP family, known also as CalDAG-GEF, consists of four members. C1 domain, allows them to bind diacylglycerol as well as DAG-analogs like phorbol esters. Binding of the ligand leads to activation of RasGRPs and in consequence to the activation of Ras and Rap proteins by the exchange of bounded guanine nucleotides. The signal transmitted by RasGRP is terminated as a result of DAG phosphorylation catalyzed by diacylglycerol kinase (DGK). Location of RasGRP proteins on the crossing of signaling cascades and broad tissue expression pattern involve them in many events essential for the cell function. RasGRP proteins play roles in such phenomena as: T cells maturation and functioning, B cells response, platelet aggregation, mast cells activity regulation, transformation and many other. In this review, structure and function of RasGRP proteins, as well as their role in neoplastic transformation are described.  相似文献   

8.
Cell motility, adhesion, and actin cytoskeletal rearrangements occur upon integrin-engagement to the extracellular matrix and activation of the small family of Rho GTPases, RhoA, Rac1, and Cdc42. The activity of the GTPases is regulated through associations with guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), and guanine dissociation inhibitors (GDIs). Recent studies have demonstrated a critical role for actin-binding proteins, such as ezrin, radixin, and moesin (ERM), in modulating the activity of small GTPases through their direct associations with GEFs, GAPs, and GDI’s. Dematin, an actin binding and bundling phospho-protein was first identified and characterized from the erythrocyte membrane, and has recently been implicated in regulating cell motility, adhesion, and morphology by suppressing RhoA activation in mouse embryonic fibroblasts. Although the precise mechanism of RhoA suppression by dematin is unclear, several plausible and hypothetical models can be invoked. Dematin may bind and inhibit GEF activity, form an inactive complex with GDI-RhoA-GDP, or enhance GAP function. Dematin is the first actin-binding protein identified from the erythrocyte membrane that participates in GTPase signaling, and its broad expression suggests a conserved function in multiple tissues.  相似文献   

9.
The Vav family of proteins are guanine nucleotide exchange factors (GEFs) for the Rho family of GTPases, which regulate various cellular functions, including T-cell activation. They contain a catalytic Dbl homology (DH) domain that is invariably followed by a pleckstrin homology (PH) domain, which is often required for catalytic activity. Vav proteins are the first GEFs for which an additional C1 domain is required for full biological activity. Here, we present the structure of a Vav1 fragment comprising the DH-PH-C1 domains bound to Rac1. This structure shows that the PH and C1 domains form a single structural unit that packs against the carboxy-terminal helix of the DH domain to stabilize its conformation and to promote nucleotide exchange. In contrast to previous reports, this structure shows that there are no direct contacts between the GTPase and C1 domain but instead suggests new mechanisms for the regulation of Vav1 activity.  相似文献   

10.
The ADP‐ribosylation factor (Arf) small G proteins act as molecular switches to coordinate multiple downstream pathways that regulate membrane dynamics. Their activation is spatially and temporally controlled by the guanine nucleotide exchange factors (GEFs). Members of the evolutionarily conserved GBF/Gea family of Arf GEFs are well known for their roles in formation of coat protein complex I (COPI) vesicles, essential for maintaining the structure and function of the Golgi apparatus. However, studies over the past 10 years have found new functions for these GEFs, along with their substrate Arf1, in lipid droplet metabolism, clathrin‐independent endocytosis, signalling at the plasma membrane, mitochondrial dynamics and transport along microtubules. Here, we describe these different functions, focussing in particular on the emerging theme of GFB1 and Arf1 regulation of organelle movement on microtubules.  相似文献   

11.

Background  

The Dbl-family of guanine nucleotide exchange factors (GEFs) activate the cytosolic GTPases of the Rho family by enhancing the rate of exchange of GTP for GDP on the cognate GTPase. This catalytic activity resides in the DH (Dbl-homology) domain, but typically GEFs are multidomain proteins containing other modules. It is believed that GEFs are autoinhibited in the cytosol due to supramodular architecture, and become activated in diverse signaling pathways through conformational change and exposure of the DH domain, as the protein is translocated to the membrane. A small family of RhoA-specific GEFs, containing the RGSL (regulators of G-protein signaling-like) domain, act as effectors of select GPCRs via12/13, although the molecular mechanism by which this pathway operates is not known. These GEFs include p115, LARG and PDZRhoGEF (PRG).  相似文献   

12.
Small molecular weight GTPases are master regulators of eukaryotic signalling, making them prime targets for bacterial virulence factors. Here, we review the recent advances made in understanding how bacterial type III secreted effector proteins directly activate GTPase signalling cascades. Specifically we focus on the SopE/WxxxE family of effectors that functionally mimic guanine nucleotide exchange factors (GEFs): the endogenous activators of Rho-family GTPases. Recent structural and biochemical studies have provided keen insight into both the signalling potency and substrate specificity of bacterial GEFs. Additionally, these bacterial GEFs display fascinating cell biological properties that provide insight into both host cell physiology and infectious disease strategies.  相似文献   

13.
The regulator of G protein signaling homology (RH) Rho guanine nucleotide exchange factors (RhoGEFs) (p115RhoGEF, leukemia-associated RhoGEF, and PDZ-RhoGEF) contain an RH domain and are specific GEFs for the monomeric GTPase RhoA. The RH domains interact specifically with the α subunits of G12 heterotrimeric GTPases. Activated Gα13 modestly stimulates the exchange activity of both p115RhoGEF and leukemia-associated RhoGEF but not PDZ-RhoGEF. Because all three RH-RhoGEFs can localize to the plasma membrane upon expression of activated Gα13, cellular localization of these RhoGEFs has been proposed as a mechanism for controlling their activity. We use a small molecule-regulated heterodimerization system to rapidly control the localization of RH-RhoGEFs. Acute localization of the proteins to the plasma membrane activates RhoA within minutes and to levels that are comparable with activation of RhoA by hormonal stimulation of G protein-coupled receptors. The catalytic activity of membrane-localized RhoGEFs is not dependent on activated Gα13. We further show that the conserved RH domains can rewire two different RacGEFs to activate Rac1 in response to a traditional activator of RhoA. Thus, RH domains act as independent detectors for activated Gα13 and are sufficient to modulate the activity of RhoGEFs by hormones via mediating their localization to substrate, membrane-associated RhoA.  相似文献   

14.
Guanine nucleotide exchange factors (GEFs) are responsible for coupling cell surface receptors to Ras protein activation. Here we describe the characterization of a novel family of differentially expressed GEFs, identified by database sequence homology searching. These molecules share the core catalytic domain of other Ras family GEFs but lack the catalytic non-conserved (conserved non-catalytic/Ras exchange motif/structurally conserved region 0) domain that is believed to contribute to Sos1 integrity. In vitro binding and in vivo nucleotide exchange assays indicate that these GEFs specifically catalyze the GTP loading of the Ral GTPase when overexpressed in 293T cells. A central proline-rich motif associated with the Src homology (SH)2/SH3-containing adapter proteins Grb2 and Nck in vivo, whereas a pleckstrin homology (PH) domain was located at the GEF C terminus. We refer to these GEFs as RalGPS 1A, 1B, and 2 (Ral GEFs with PH domain and SH3 binding motif). The PH domain was required for in vivo GEF activity and could be functionally replaced by the Ki-Ras C terminus, suggesting a role in membrane targeting. In the absence of the PH domain RalGPS 1B cooperated with Grb2 to promote Ral activation, indicating that SH3 domain interaction also contributes to RalGPS regulation. In contrast to the Ral guanine nucleotide dissociation stimulator family of Ral GEFs, the RalGPS proteins do not possess a Ras-GTP-binding domain, suggesting that they are activated in a Ras-independent manner.  相似文献   

15.
A steady-state kinetic mechanism describing the interaction of M(2) muscarinic acetylcholine receptors and the guanine nucleotide-binding protein G(i)alpha(2)beta(1)gamma(3) are presented. Data are consistent with two parallel pathways of agonist-promoted GTPase activity arising from receptor coupled to a single or multiple guanine nucleotide-binding proteins. An aspartate 103 to asparagine receptor mutation resulted in a receptor lacking the ability to catalyze the binding of guanosine-5'-O-(3-thiotriphosphate) or guanosine triphosphate hydrolysis by the G protein. An aspartate 69 to asparagine receptor mutant was able to catalyze agonist-specific guanine nucleotide exchange and GTPase activity. A threonine 187 to alanine receptor mutation resulted in a receptor that catalyzed guanine nucleotide exchange comparable with wild-type receptors but had reduced ability to stimulate GTP hydrolysis. A tyrosine 403 to phenylalanine receptor mutation resulted in an increase in agonist-promoted GTPAse activity compared with wild type. The observation that the threonine 187 and tyrosine 403 mutants promote guanine nucleotide exchange similarly to wild type but alter GTPase activity compared with wild type suggests that the effects of the mutations arise downstream from guanine nucleotide exchange and may result from changes in receptor-G protein dissociation.  相似文献   

16.
Rho GTPase activation, which is mediated by guanine nucleotide exchange factors (GEFs), is tightly regulated in time and space. Although Rho GTPases have a significant role in many biological events, they are best known for their ability to restructure the actin cytoskeleton profoundly through the activation of specific downstream effectors. Two distinct families of GEFs for Rho GTPases have been reported so far, based on the features of their catalytic domains: firstly, the classical GEFs, which contain a Dbl homology-pleckstrin homology domain module with GEF activity, and secondly, the Dock180-related GEFs, which contain a Dock homology region-2 domain that catalyzes guanine nucleotide exchange on Rho GTPases. Recent exciting data suggest key roles for the DHR-2 domain-containing GEFs in a wide variety of fundamentally important biological functions, including cell migration, phagocytosis of apoptotic cells, myoblast fusion and neuronal polarization.  相似文献   

17.
Rho GTPases regulate a wide variety of cellular processes, ranging from actin cytoskeleton remodeling to cell cycle progression and gene expression. Cell surface receptors act through a complex regulatory molecular network that includes guanine exchange factors (GEFs), GTPase activating proteins, and guanine dissociation inhibitors to achieve the coordinated activation and deactivation of Rho proteins, thereby controlling cell motility and ultimately cell fate. Here we found that a member of the RGL-containing family of Rho guanine exchange factors, PDZ RhoGEF, which, together with LARG and p115RhoGEF, links the G(12/13) family of heterotrimeric G proteins to Rho activation, binds through its C-terminal region to the serine-threonine kinase p21-activated kinase 4 (PAK4), an effector for Cdc42. This interaction results in the phosphorylation of PDZ RhoGEF and abolishes its ability to mediate the accumulation of Rho-GTP by Galpha13. Moreover, when overexpressed, active PAK4 was able to dramatically decrease Rho-GTP loading in vivo and the formation of actin stress fibers in response to serum or LPA stimulation. Together, these results provide evidence that PAK4 can negatively regulate the activation of Rho through a direct protein-protein interaction with G protein-linked Rho GEFs, thus providing a novel potential mechanism for cross-talk among Rho GTPases.  相似文献   

18.
Asef is a member of the Dbl-family of guanine nucleotide exchange factors (GEFs) with a proposed specificity for the small GTPase Rac1. Here we investigated the specificity and regulation of Asef by measuring its GEF activity in vitro and observed hardly any activity towards Rac1, Rac2 and Rac3, or RhoA and TC10. In contrast, various purified Asef protein fragments catalyzed the nucleotide exchange reaction of Cdc42. The Cdc42GEF activity of the Dbl homology (DH) domain of Asef was significantly higher in the presence of the pleckstrin homology (PH) domain. Our data strongly suggest that Asef is a canonical Cdc42GEF, which employs its PH domain to efficiently stabilize its autoinhibited state, but also to facilitate nucleotide exchange activity of the DH domain after its activation by upstream signals.  相似文献   

19.
《Molecular membrane biology》2013,30(7-8):427-444
Abstract

Small GTPases of the Rho family (RhoA, Rac1, and Cdc42) and the Ras family GTPase Rap1 are essential for the assembly and function of epithelial cell-cell junctions. Through their downstream effectors, small GTPases modulate junction formation and stability, primarily by orchestrating the polymerization and contractility of the actomyosin cytoskeleton. The major upstream regulators of small GTPases are guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). Several GEFs and a few GAPs have been localized at epithelial junctions, and bind to specific junctional proteins. Thus, junctional proteins can regulate small GTPases at junctions, through their interactions with GEFs and GAPs. Here we review the current knowledge about the mechanisms of regulation of small GTPases by junctional proteins. Understanding these mechanisms will help to clarify at the molecular level how small GTPases control the morphogenesis and physiology of epithelial tissues, and how they are disregulated in disease.  相似文献   

20.
The gonad in Caenorhabditis elegans is an important model system for understanding complex morphogenetic processes including cellular movement, cell fusion, cell invasion and cell polarity during development. One class of signaling proteins known to be critical for the cellular events underlying morphogenesis is the Rho family GTPases, particularly RhoA, Rac and Cdc42. In C. elegans orthologues of these genes have been shown to be important for gonad development. In our current study we have extended those findings by examining the patterns of 5′ cis-regulatory element (5′CRE) activity associated with nineteen putative guanine nucleotide exchange factors (GEFs) encoded by the C. elegans genome predicted to activate Rho family GTPases. Here we identify 13 RhoGEF genes that are expressed during gonadogenesis and characterize the cells in which their 5′CREs are active. These data provide the basis for designing experiments to examine Rho GTPase activation during morphogenetic processes central to normal gonad development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号