首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ligase-Defective Bacteriophage T4 I. Effects on Mutation Rates   总被引:4,自引:4,他引:0       下载免费PDF全文
Temperature-sensitive mutations in bacteriophage T4 gene 30 (polynucleotide ligase) were examined for their effects on spontaneous and proflavine-induced frameshift mutagenesis in the rII and ac (acridine resistance) cistrons. Only small (fourfold or less) effects on mutation rates were observed, even when selection artifacts involving suppression of gene 30 mutations by rII mutations were taken into account. The deoxyribonucleic acid ligase gene of T4 therefore appears to be only a minor determinant of frameshift mutation rates. This result is consistent with the particular nature of frameshift mutagenesis in bacteriophage T4.  相似文献   

2.
Temperature-sensitive (ts) mutants representative of a number of genes of phage T4 were crossed with rII mutants to allow isolation of ts, rII double-mutant recombinants. The rII mutations used were characterized as frameshift mutations primarily on the basis of their revertability by proflavine. For each ts, rII double mutant, the effect of the ts mutation on spontaneous reversion of the rII mutation was determined over a range of incubation temperatures. A strong enhancement in reversion of two different rII mutants was detected when they were combined with tsL56, a mutation in gene 43 [deoxyribonucleic acid (DNA) polymerase]. Three other mutants defective in gene 43 enhanced reversion about fourfold. Two mutations in gene 32, which specifies a protein necessary for DNA replication, enhanced reversion about 5-fold and 18-fold, respectively. Two additional mutations in gene 43 and two in gene 32 had no effect. Fivefold and threefold enhancements in reversion were also found with mutations in genes 44 (DNA synthesis) and 47 (deoxyribonuclease), respectively. No significant effect was found with mutations in seven additional genes. The results of other workers suggest that frameshift mutations arise from errors in strand alignment during repair synthesis occurring at chromosome tips. Our results show that such errors can be enhanced by mutations in the DNA polymerase, the gene 32 protein, and the enzymes specified by genes 44 and 47. This implies that these proteins are employed in the repair process occurring at chromosome tips and that mutational errors in these proteins can lead to loss of ability to recognize and reject strand misalignments.  相似文献   

3.
Summary Mutagenesis by 5-bromodeoxyuridine (BrdUrd) can result from base-pairing errors either during replication of a BrdUrd-containing template or at the nucleotide incorporation step. Replication errors give rise predominantly to AT-to-GC transitions, while incorporation errors, in which 5-bromo-dUTP competes with dCTP at a template guanine site, should give rise to GC-to-AT transitions. The latter pathway should be sensitive to deoxyribonucleoside triphosphate (dNTP) pool fluctuations. Since dNTP pools are regulated through allosteric control of ribonucleotide reductase, the control of this enzyme should be a determinant of BrdUrd mutagenesis — if mutagenesis results largely from incorporation errors. Since T4 phage-encoded ribonucleotide reductase is insensitive to feedback inhibition, we established conditions under which phage DNA replication is dependent upon ribonucleotide reductase of the host, Escherichia coli. We examined BrdUrd mutagenesis of rII mutants known to revert to wild type either by AT-to-GC or GC-to-AT transition pathways. While both reversion pathways were stimulated under all conditions analyzed, the AT-to-GC pathway was stimulated more when the E. coli reductase was functioning, while the GC-to-AT pathway was more specifically enhanced when the T4 reductase was active. These results confirm that ribonucleotide reductase is a determinant of BrdUrd mutagenesis, but our observations, plus experiments showing that BrdUrd has relatively small effects upon dNTP pool sizes, indicate that the relationship between deoxyribonucleotide metabolism and BrdUrd mutagenesis is more complex than anticipated.  相似文献   

4.
A Major Role for Bacteriophage T4 DNA Polymerase in Frameshift Mutagenesis   总被引:6,自引:2,他引:4  
T4 DNA polymerase strongly influences the frequency and specificity of frameshift mutagenesis. Fifteen of 19 temperature-sensitive alleles of the DNA polymerase gene substantially influenced the reversion frequencies of frameshift mutations measured in the T4 rII genes. Most polymerase mutants increased frameshift frequencies, but a few alleles (previously noted as antimutators for base substitution mutations) decreased the frequencies of certain frameshifts while increasing the frequencies of others. The various patterns of enhanced or decreased frameshift mutation frequencies suggest that T4 DNA polymerase is likely to play a variety of roles in the metabolic events leading to frameshift mutation. A detailed genetic study of the specificity of the mutator properties of three DNA polymerase alleles (tsL56, tsL98 and tsL88) demonstrated that each produces a distinctive frameshift spectrum. Differences in frameshift frequencies at similar DNA sequences within the rII genes, the influence of mutant polymerase alleles on these frequencies, and the presence or absence of the dinucleotide sequence associated with initiation of Okazaki pieces at the frameshift site has led us to suggest that the discontinuities associated with discontinuous DNA replication may contribute to spontaneous frameshift mutation frequencies in T4.  相似文献   

5.
DNA precursor imbalances are known to be mutagenic in both eukaryotic and prokaryotic systems. Almost certainly, such mutagenesis involves competition between correctly and incorrectly base-paired precursors at replication sites. Since other factors may be involved, it is important to identify specific mutations induced by specific pool imbalances. Using bacteriophage T4, we have developed a system for such analysis. We prepare double mutants of T4; one mutation affects a phage-coded enzyme of deoxyribonucleoside triphosphate (dNTP) metabolism, while the second is an rII mutation known to revert along a specific pathway. We determine dNTP pools in infection by such a mutant and measure both the spontaneous reversion rate of the rII mutation and, in some cases, the nucleotide sequence at the mutant site. In this paper we analyze mutations induced by a deficiency of T4-encoded deoxycytidylate deaminase. This causes pools of 5-hydroxymethyl-dCTP to expand some 30-fold, while dTTP pools contract. This specifically stimulates AT-to-GC reversion. One of the four AT-to-GC reverters tested, rIIUV215, increases its reversion rate at least 1000-fold under these pool-imbalance conditions, while the other mutants tested show increases of only about 10-fold. Therefore, factors other than dNTP competition, including local DNA sequence environment, must be invoked to fully explain mechanisms of dNTP pool imbalance-induced mutagenesis. We discuss models for this, and we also report unexpected effects of the dCMP deaminase deficiency upon pools of ribonucleoside triphosphates.  相似文献   

6.
Ultraviolet irradiation of Escherichia coli polA(-) cells reduces their capacity to support the growth of T4 phage. There is no additional loss of capacity observed in pol tsA(-)recA(-) double mutants at the nonpermissive temperature. The reversion frequency of a T4 rII mutant after ultraviolet irradiation is not changed by the absence of host deoxyribonucleic acid polymerase I.  相似文献   

7.
In Escherichia coli K-12 strains infected with phage T4 which is defective in gene 30 [deoxyribonucleic acid (DNA) ligase] and in the rII gene (product unknown), near normal levels of DNA and viable phage were produced. Growth of such T4 ligase-rII double mutants was less efficient in E. coli B strains which show the "rapidlysis" phenotype of rII mutations. In pulse-chase experiments coupled with temperature shifts and with inhibition of DNA synthesis, it was observed that DNA synthesized by gene 30-defective phage is more susceptible to breakdown in vivo when the phage is carrying a wild-type rII gene. Breakdown was delayed or inhibited by continued DNA synthesis. Mutations of the rII gene decreased but did not completely abolish the breakdown. T4 ligase-rII double mutants had normal sensitivity to ultraviolet irradiation.  相似文献   

8.
Nonsense Mutants in the rII A Cistron of Bacteriophage T4   总被引:2,自引:1,他引:1       下载免费PDF全文
After in vitro treatment of bacteriophage T4 with hydroxylamine (HA), 54 nonsense mutants in the rII A cistron were isolated. These mutants were characterized by growth on suppressor strains of Escherichia coli, and the mutational sites were mapped in the rII A cistron. Twenty-five (9 sites) were amber (UAG), 20 (6 sites) were opal (UGA), and 9 (6 sites) were ochre (UAA). Mapping experiments further indicated that there were three closely linked pairs of amber and opal mutations, conceivably involving mutations occurring in adjacent nucleotides. Based on the specificity of HA mutagenesis (GC → AT), the amino acid codons in which the mutations occurred have been inferred. It is suggested that the three amber-opal pairs arose in tryptophan codons (UGG) and the six ochre mutants arose in glutamine codons (CAA). The six unpaired ambers and the three unpaired opals have been tentatively assigned to glutamine codons (CAG) and arginine codons (CGA), respectively, in the wild-type phage.  相似文献   

9.
The bacteriophage T4 rnh gene encodes T4 RNase H, a relative of a family of flap endonucleases. T4 rnh null mutations reduce burst sizes, increase sensitivity to DNA damage, and increase the frequency of acriflavin resistance (Acr) mutations. Because mutations in the related Saccharomyces cerevisiae RAD27 gene display a remarkable duplication mutator phenotype, we further explored the impact of rnh mutations upon the mutation process. We observed that most Acr mutants in an rnh+ strain contain ac mutations, whereas only roughly half of the Acr mutants detected in an rnhDelta strain bear ac mutations. In contrast to the mutational specificity displayed by most mutators, the DNA alterations of ac mutations arising in rnhDelta and rnh+ backgrounds are indistinguishable. Thus, the increase in Acr mutants in an rnhDelta background is probably not due to a mutator effect. This conclusion is supported by the lack of increase in the frequency of rI mutations in an rnhDelta background. In a screen that detects mutations at both the rI locus and the much larger rII locus, the r frequency was severalfold lower in an rnhDelta background. This decrease was due to the phenotype of rnh rII double mutants, which display an r+ plaque morphology but retain the characteristic inability of rII mutants to grow on lambda lysogens. Finally, we summarize those aspects of T4 forward-mutation systems which are relevant to optimal choices for investigating quantitative and qualitative aspects of the mutation process.  相似文献   

10.
Temperature-sensitive (ts) mutants of the T4 phage rII gene were islated and used in temperature shift experiments that revelaed two different expressions for the normal rII (rII+) gene function in vivo: (i) an early expression (0 to 12 min postinfection at 30 C) that prevents restriction of T4 growth in Escherichia coli hosts lysogenic for gamma phage, and (ii) a later expression (12 to 18 min postinfection at 30 C) that results in restriction of T4 growth when the phage DNA ligase (gene 30) is missing. The earlier expression appeared to coincide with the period of synthesis of the protein product of the T4 rIIA cistron, whereas the later expression occurred after rIIA protein synthesis had stopped. The synthesis of the protein product of the rIIB cistron continues for several minutes after rIIA protein synthesis ceases (O'Farrell and Gold, 1973). The two rII+ gene expressions might require different molar ratios of the rIIA and rIIB proteins. It is possible that the separate expressions of rII+ gene function are manifestations of different associations between the two rII proteins and other T4-induced proteins that are synthesized or activated at different times after phage infection.  相似文献   

11.
Two mutational approaches were used to perform a thorough structure-function analysis of the first 53 residues of the 159-residue cytokine human interleukin-1 alpha (hIL-1 alpha). In this study, a total of 26 deletions, 97 multiple amino acid substitutions, and 46 single amino acid substitutions were examined. A synthetic hIL-1 alpha gene with many unique restriction sites was constructed to facilitate the molecular manipulations that were performed. The mutational methods employed include: Bal-31 exonuclease-generated deletions at unique restriction sites and combinatorial cassette mutagenesis via segment replacement with synthetic DNA. The mutant hIL-1 alpha proteins were expressed at high levels in Escherichia coli and were assayed for biological activity in a mouse T cell proliferation assay. We observed that the activity of hIL-1 alpha was extraordinarily sensitive to deletion mutations. Most internal deletions of as few as 1 or 2 residues substantially reduced biological activity. Combinatorial cassette mutagenesis on residues 13-53 of hIL-1 alpha identified 15 important residue positions. Of these, 8 displayed strong preferences for residues with hydrophilic side chains, and the remainder preferred hydrophobic side chains. We found that functional hIL-1 alpha had an absolute requirement for a basic residue (Arg, Lys, or His) at either position 15 or 16, and that Leu was preferred at position 40.  相似文献   

12.
Mutagenic Specificity of a Novel T4 DNA Polymerase Mutant   总被引:1,自引:1,他引:0  
The in vivo mutational specificity of a novel T4 DNA polymerase mutator mutant, tsM19, was determined. Two genetic tester systems were used to characterize the mutant. Results of our studies indicate that tsM19 promotes transition and transversion mutagenesis and, possibly, frameshift mutagenesis. Central G:C base pairs in runs of three or more consecutive G:C base pairs may be target sites for tsM19-induced transitions.  相似文献   

13.
Like most phages with double-stranded DNA, phage T4 exits the infected host cell by a lytic process requiring, at a minimum, an endolysin and a holin. Unlike most phages, T4 can sense superinfection (which signals the depletion of uninfected host cells) and responds by delaying lysis and achieving an order-of-magnitude increase in burst size using a mechanism called lysis inhibition (LIN). T4 r mutants, which are unable to conduct LIN, produce distinctly large, sharp-edged plaques. The discovery of r mutants was key to the foundations of molecular biology, in particular to discovering and characterizing genetic recombination in T4, to redefining the nature of the gene, and to exploring the mutation process at the nucleotide level of resolution. A number of r genes have been described in the past 7 decades with various degrees of clarity. Here we describe an extensive and perhaps saturating search for T4 r genes and relate the corresponding mutational spectra to the often imperfectly known physiologies of the proteins encoded by these genes. Focusing on r genes whose mutant phenotypes are largely independent of the host cell, the genes are rI (which seems to sense superinfection and signal the holin to delay lysis), rIII (of poorly defined function), rIV (same as sp and also of poorly defined function), and rV (same as t, the holin gene). We did not identify any mutations that might correspond to a putative rVI gene, and we did not focus on the famous rII genes because they appear to affect lysis only indirectly.  相似文献   

14.
Wild-type bacteriophage T4 is restricted by the lambda rex genes.   总被引:5,自引:0,他引:5       下载免费PDF全文
S Shinedling  D Parma    L Gold 《Journal of virology》1987,61(12):3790-3794
The bacteriophage T4 rII genes and the lambda rex (r exclusion) genes interact; rII mutants are unable to productively infect rex+ lambda lysogens. The relationship between rex and rII has been found to be quantitative, and plasmid clones of rex have excluded not only rII mutants but T4 wild type and most other bacteriophages as well. Mutations in the T4 motA gene substantially reversed exclusion of T4 by rex.  相似文献   

15.
Random mutagenesis was used to improve the optimum temperature for Rhizopus niveus lipase (RNL) activity. The lipase gene was mutated using the error-prone PCR technique. One desirable mutant was isolated, and three amino acids were substituted in this mutant (P18H, A36T and E218V). The wild-type and this randomly mutated lipase were both purified and characterized. The specific activity of the mutant lipase was 80% that of the wild-type. The optimum temperature of the mutant lipase was higher by 15 degrees C than that of the wild-type. To confirm which substitution contributed to enhancing the optimum temperature for enzymic activity, two chimeric lipases from the wild-type and randomly mutated gene were constructed: chimeric lipase 1 (CL-1; P18H and A36T) and chimeric lipase 2 (CL-2; E218V). Each of the chimeric enzymes was purified, and the optimum temperature for lipase activity was measured. CL-1 had a similar optimum temperature to that of the wild-type, and CL-2 had a higher temperature like the randomly mutated lipase. The mutational effect is interpreted in terms of a three-dimensional structure for the wild-type lipase.  相似文献   

16.
O6-methylguanine (O6-MeG) DNA methyltransferase (MTase) removes the methyl group from a DNA lesion and directly restores DNA structure. It has been shown previously that bacterial and yeast cells lacking such MTase activity are not only sensitive to killing and mutagenesis by DNA methylating agents, but also exhibit an increased spontaneous mutation rate. In order to understand molecular mechanisms of endogenous DNA alkylation damage and its effects on mutagenesis, we determined the spontaneous mutational spectra of the SUP4-o gene in various Saccharomyces cerevisiae strains. To our surprise, the mgt1 mutant deficient in DNA repair MTase activity exhibited a significant increase in G:C-->C:G transversions instead of the expected G:C-->A:T transition. Its mutational distribution strongly resembles that of the rad52 mutant defective in DNA recombinational repair. The rad52 mutational spectrum has been shown to be dependent on a mutagenesis pathway mediated by REV3. We demonstrate here that the mgt1 mutational spectrum is also REV3-dependent and that the rev3 deletion offsets the increase of the spontaneous mutation rate seen in the mgt1 strains. These results indicate that the eukaryotic mutagenesis pathway is directly involved in cellular processing of endogenous DNA alkylation damage possibly by the translesion bypass of lesions at the cost of G:C-->C:G transversion mutations. However, the rev3 deletion does not affect methylation damage-induced killing and mutagenesis of the mgt1 mutant, suggesting that endogenous alkyl lesions may be different from O6-MeG.  相似文献   

17.
Summary We have isolated mutants of Escherichia coli B (called TabR) that restrict the growth of bacteriophage T4 rII mutants at high temperature. TabR strains lysed very rapidly after infection with rII mutants, and no progeny phage were produced. T4+-infected TabR cells also lysed quickly, but the cells remained intact long enough to give a small burst. We have selected pseudorevertants of rII deletion mutants that grow on TabR at high temperature; tk (thymidine kinase) is a component of one class of these pseudorevertants.T4 strains harboring mutations in genes 12, 16, 25, 34, 36, 45 and 63 were also specifically restricted on TabR strains at high temperature. Bacteriophages T2, T4, T5, T6, and T7 grew normally on TabR, while , 80, and P1 failed to grow at any temperature. The most restrictive TabR strains were auxotrophic for methionine at high temperature, and most spontaneous Met+ revertants had also lost the ability to restrict rII mutants, suggesting that the TabR phenotype and methionine auxotrophy result from the same mutation.Although the mechanism by which TabR strains exert their restriction has not been determined, one model is described. The potential uses of these and similar strains is discussed.  相似文献   

18.
Mutation to resistance to bacteriophage T5 was studied in chemostat cultures of Escherichia coli strain WP2 Hcr exposed to ultraviolet radiation (UV). The results are in generally good agreement with those obtained earlier by Bridges and Munson for UV-induced reversion to tryptophan independence in exponentially growing cultures of the same strain: expressed mutant yields followed a dose-squared response, mutations were not expressed before approximately one generation after exposure to UV, there was a slow disappearance of dimers especially noticeable in slowly growing and stationary cultures, and the first replication gave rise to duplex mutants in both strands. Several new results were also obtained. In addition to expressed mutant yields, induction of mutational capacity was also observed to follow a dose-squared response, indcating that the response is not an artifact of selection or repair. Induction also increased with growth rate, apparently as the square of the number of genes for T5-sensitivity per cell. It is suggested that mutagenesis is proportional to the number of genes per cell, that recombination is also proportional to the number of genes per cell, and that the number of mutational lesions is proportional to the product of the two. These results also provide evidence that DNA replication occurs near the end of the cell cycle in slowly growing cultures. Under all growth conditions, latent mutant concentrations mutational capacity) decreased by a factor of two with each successive division. Latent mutants were, however, photoreversible for only the first two generations. If mutagenesis occurs as a recombinant event between two mutational lesions, then the results also indicate that these lesions are separated, on the average, by no more than a single cistron.  相似文献   

19.
In the family-B DNA polymerase of bacteriophage RB69, the conserved aromatic palm-subdomain residues Tyr391 and Tyr619 interact with the last primer-template base-pair. Tyr619 interacts via a water-mediated hydrogen bond with the phosphate of the terminal primer nucleotide. The main-chain amide of Tyr391 interacts with the corresponding template nucleotide. A hydrogen bond has been postulated between Tyr391 and the hydroxyl group of Tyr567, a residue that plays a key role in base discrimination. This hydrogen bond may be crucial for forcing an infrequent Tyr567 rotamer conformation and, when the bond is removed, may influence fidelity. We investigated the roles of these residues in replication fidelity in vivo employing phage T4 rII reversion assays and an rI forward assay. Tyr391 was replaced by Phe, Met and Ala, and Tyr619 by Phe. The Y391A mutant, reported previously to decrease polymerase affinity for incoming nucleotides, was unable to support DNA replication in vivo, so we used an in vitro fidelity assay. Tyr391F/M replacements affect fidelity only slightly, implying that the bond with Tyr567 is not essential for fidelity. The Y391A enzyme has no mutator phenotype in vitro. The Y619F mutant displays a complex profile of impacts on fidelity but has almost the same mutational spectrum as the parental enzyme. The Y619F mutant displays reduced DNA binding, processivity, and exonuclease activity on single-stranded DNA and double-stranded DNA substrates. The Y619F substitution would disrupt the hydrogen bond network at the primer terminus and may affect the alignment of the 3' primer terminus at the polymerase active site, slowing chemistry and overall DNA synthesis.  相似文献   

20.
Drake, John W. (University of Illinois, Urbana). Ultraviolet mutagenesis in bacteriophage T4. II. Photoreversal of mutational lesions. J. Bacteriol. 92:144-147. 1966.-T4r mutations were induced by ultraviolet irradiation of extracellular phage particles, using a phage mutant, v, which is particularly susceptible to photoreactivation. Most of the induced r mutations could be subsequently photoreversed intracellularly with white light. Ultraviolet irradiation induces both transitions and sign mutations, and both were susceptible to photoreversal. The results suggest that two very different types of mutational lesions may arise from a common type of photochemical lesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号