首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The orphan receptor T1/ST2, a member of the IL-1R family, is preferentially expressed on the surface of murine Th2 cells. In this study, we analyzed the kinetics and function of T1/ST2 expression on Th2 cells in vitro. Whereas naive CD4(+) cells did not express T1/ST2, most CD4(+) cells became T1/ST2(+) upon repeated antigenic stimulation under Th2-polarizing conditions. Flow cytometric analyses revealed that the kinetics of T1/ST2 expression on Th2 cells was delayed compared with the kinetics of type 2 cytokine production. Exogenous IL-6, IL-5, IL-1, and TNF-alpha enhanced the expression of T1/ST2 on Th2 cells, and IL-6 was by far most effective in this regard. However, the expression of T1/ST2 did not depend on the presence of IL-6 and was also detected in IL-6-deficient mice. Most important, cross-linking of T1/ST2 provided a costimulatory signal for Th2 but not Th1 cells and directly induced proliferation and type 2 cytokine production. Thus, T1/ST2 is not only a Th2 cell marker but also plays an important role in the activation of Th2 cells.  相似文献   

2.
A precise knowledge of the early events inducing maturation of resting microglia into a competent APC may help to understand the involvement of this cell type in the development of CNS immunopathology. To elucidate whether signals from preactivated T cells are sufficient to induce APC features in resting microglia, microglia from the adult BALB/c mouse CNS were cocultured with Th1 and Th2 lines from DO11.10 TCR transgenic mice to examine modulation of APC-related molecules and Ag-presenting capacity. Upon Ag-specific interaction with Th1, but not Th2, cells, microglia strongly up-regulated the surface expression of MHC class II, CD40, and CD54 molecules. Induction of CD86 on mouse microglia did not require T cell-derived signals. Acutely isolated adult microglia stimulated Th1 cells to secrete IFN-gamma and, to a lesser extent, IL-2, but were inefficient stimulators of IL-4 secretion by Th2 cells. Microglia exposed in vitro to IFN-gamma showed enhanced expression of MHC class II, CD40, and CD54 molecules and became able to restimulate Th2 cells. In addition to IFN-gamma, GM-CSF increased the ability of microglia to activate Th1, but not Th2, cells without up-regulating MHC class II, CD40, or CD54 molecules. These results suggest that interaction with Th1 cells and/or Th1-secreted soluble factors induces the functional maturation of adult mouse microglia into an APC able to sustain CD4+ T cell activation. Moreover, GM-CSF, a cytokine secreted by T cells as well as reactive astrocytes, could prime microglia for Th1-stimulating capacity, possibly by enhancing their responsiveness to Th1-derived signals.  相似文献   

3.
4.
5.
Progressive lymphoproliferation and increasingly severe immunodeficiency are prominent features of a syndrome, designated mouse AIDS, which develops in susceptible strains of mice infected with the mixture of murine leukemia viruses, termed LP-BM5. Development of splenomegaly and lymphadenopathy, caused primarily by increases in B cell immunoblasts, requires the presence of CD4+ T cells and is assumed to be mediated by lymphokines produced by these cells inasmuch as progression of disease is markedly inhibited by treatment of infected mice with cyclosporin A. Studies of spleen cells from infected mice revealed spontaneous production of cytokines (IFN-gamma, IL-2, IL-4, IL-5, and IL-10) characteristic of Th0 (or a mixture of Th1 and Th2) T helper cells at 1 wk after infection. At later times, IFN-gamma and IL-2, characteristic products of Th1 helper clones, were expressed poorly, either spontaneously or after stimulation of cells with Con A. In contrast, IL-4, IL-5, IL-6, and IL-10, cytokines typically synthesized by Th2 cells, were produced in response to Con A or spontaneously through 18 wk post-infection. Increased serum IgE levels and enhanced IL-10 mRNA expression were consistent with expression of Th2 cytokines at biologically significant levels in vivo. Selective depletion of T cell subsets before stimulation with Con A showed that CD4+ T cells were the primary source of IL-2, IL-4, IL-10, and, to a lesser extent, IFN-gamma in spleens and lymph nodes of normal or infected mice. These results suggest that persistent activation of CD4+ T cells with the lymphokine profile of Th2 helper clones is responsible for chronic B cell stimulation, down-regulation of Th1 cytokines, and impaired CD8+ T cell function in mouse AIDS. This provides the first demonstration that, like many parasitic infections, viruses encoding potent antigenic stimuli can markedly affect the balance of Th subset expression.  相似文献   

6.
Humans and mice have evolved distinct pathways for Th1 cell development. Although IL-12 promotes CD4(+) Th1 development in both murine and human T cells, IFN-alphabeta drives Th1 development only in human cells. This IFN-alphabeta-dependent pathway is not conserved in the mouse species due in part to a specific mutation within murine Stat2. Restoration of this pathway in murine T cells would provide the opportunity to more closely model specific human disease states that rely on CD4(+) T cell responses to IFN-alphabeta. To this end, the C terminus of murine Stat2, harboring the mutation, was replaced with the corresponding human Stat2 sequence by a knockin targeting strategy within murine embryonic stem cells. Chimeric m/h Stat2 knockin mice were healthy, bred normally, and exhibited a normal lymphoid compartment. Furthermore, the murine/human STAT2 protein was expressed in murine CD4(+) T cells and was activated by murine IFN-alpha signaling. However, the murine/human STAT2 protein was insufficient to restore full IFN-alpha-driven Th1 development as defined by IFN-gamma expression. Furthermore, IL-12, but not IFN-alpha, promoted acute IFN-gamma secretion in collaboration with IL-18 stimulation in both CD4(+) and CD8(+) T cells. The inability of T cells to commit to Th1 development correlated with the lack of STAT4 phosphorylation in response to IFN-alpha. This finding suggests that, although the C terminus of human STAT2 is required for STAT4 recruitment and activation by the human type I IFNAR (IFN-alphabetaR), it is not sufficient to restore this process through the murine IFNAR complex.  相似文献   

7.
8.
Treatment of Th cells with compounds that elevate cAMP levels augments Th2-type lymphokine expression, in particular the synthesis of IL-5. Using primary murine CD4(+) T lymphocytes, we show in this study that inhibition of protein kinase A (PKA) activity in Th2 effector cells impairs IL-5 synthesis, whereas the expression of PKA catalytic subunit alpha enhances IL-5 synthesis in Th0 cells. In addition, we observed by coexpression of PKA catalytic subunit and GATA-3 in Th1 cells that the stimulatory effect of PKA is dependent on GATA-3 activity. These data demonstrate that activation of PKA in Th effector cells induces the IL-5 gene expression in a GATA-3-dependent manner.  相似文献   

9.
A number of reports have described the monoallelic expression of murine cytokine genes. Here we describe the monoallelic expression of the human IL-1alpha gene in CD4+ T cells. Analysis of peripheral blood T cell clones derived from healthy individuals revealed that the IL-1alpha gene shows predominantly monoallelic expression. Monoallelic expression was observed in Th0, Th1, and Th2 cell clones. In addition, we demonstrate monoallelic expression in T cell clones from rheumatoid arthritis patients derived from synovial fluid of the knee joint, suggesting that the occurrence of this phenomenon is not different from that in clones derived from healthy individuals. The finding of monoallelic expression of a cytokine gene in human CD4+ T cell clones provides evidence for allele-specific silencing/activation as another layer of regulation of IL-1alpha gene expression.  相似文献   

10.
Culture of murine T cells with immobilized (platebound) anti-CD3 antibody results in autocrine growth factor secretion in both Th1 (IL-2 producing) and Th2 (IL-4 producing) cells. Using a panel of murine T cell clones, we demonstrate that the IL-2-induced proliferation of Th1 clones is dramatically inhibited by immobilized anti-CD3 antibody, whereas that of Th2 clones is not. This unresponsiveness of Th1 clones to IL-2 is not due to decreases in IL-2R expression. Supernatants from Th1 or Th2 cell cultures fail to alter the effects of anti-CD3 on the two types of clones, suggesting that unresponsiveness induced in Th1 clones or the lack thereof in Th2 clones is not mediated by a stable cytokine(s). Accessory cells enhance the proliferation of Th1 cells exposed to low concentrations of anti-CD3, but the unresponsiveness induced by high concentrations of anti-CD3 is not prevented by accessory cells. Finally, soluble anti-CD4 antibody prevents the induction of the unresponsive state even at high concentrations of anti-CD3. These experiments demonstrate that two subsets of cloned CD4+ T cells differ in their responses to anti-CD3, and that CD4 molecules may play a critical role in regulating the outcome of receptor-mediated stimulation.  相似文献   

11.
12.
Most macrophages in the peripheral tissues present Ag optimally to a variety of functionally distinct Th cells. Although thymic macrophages have been implicated in deleting autoreactive thymocytes, their role in influencing the functional capacities of mature T cells is not clear. We have established a normal untransformed macrophage cell line, named TMC, from the mouse thymus. The TMC line presents protein Ag to an IL-4-producing Th2 type Th clone after IFN-gamma treatment as evidence by T cell proliferation and the release of IL-3 and IL-4. However, these thymic macrophages are inefficient at stimulating a well characterized cytochrome C-specific IL-2-producing Th1 clone, A.E7. Ag presentation by TMC results in the production of IL-3 but not IL-2 production or proliferation of A.E7 cells. This selective Ag presentation defect to Th1 cells is corrected by the addition of live but not fixed allogeneic irradiated spleen cells, suggesting that the thymic macrophages lack the expression of costimulatory activity required for Th1 activation. This is further demonstrated by the failure of live thymic macrophages to provide costimulatory activity to A.E7 cells stimulated with fixed spleen cells plus the antigenic peptide 81-104. Exposure of A.E7 cells to paraformaldehyde-treated TMC in the presence of 81-104 peptide induces specific hyporesponsiveness, anergy. These data demonstrate that thymic macrophages can have a profound influence on the response of selected T cells to Ag. Furthermore, the nature of the T cell stimulus is also critical because Th1 and Th2 cells responded equally well to the T cell mitogen, Con A, and a bacterial superantigen presented by the thymic macrophages.  相似文献   

13.
It has been demonstrated in our previous work that, in the human skin-grafting model, the expression of costimulatory molecule B7H1 (PD-L1) by keratinocytes plays an essential role in inducing local tolerance via activation of IL-10-secreting T cells. This study further analyzes the role of B7H1 in differentiation of type 1 T regulatory (Tr1) cells and explores underlying mechanisms. Mouse fusion protein B7H1-Ig is used, together with immobilized anti-CD3 mAb, to costimulate the purified naive CD4+ T cells. B7H1-Ig-treated CD4+ T cells were found to activate a characteristic Tr1 population possessing a CD4+ CD25- Foxp3- CD45RBlow phenotype. These regulatory T cells strongly inhibited the Th1-dominated MLR by secretion of IL-10 and TGF-beta. Moreover, B7H1-treated Tr1 cells also resulted in suppressed clinical scores and demyelination when adoptively transferred into mice with experimental allergic encephalomyelitis. Furthermore, analysis of the cytokine profile indicated that there were two differential reaction patterns during the B7H1-Ig-induced Tr1 development. These two patterns were characterized by activation of IFN-gammaR+ IL-10R- Th1 and IFN-gammaR+ IL-10R+ Tr1 cells, respectively. Secretion of IFN-gamma by Th1 and the expression of IFN-gammaR on Tr1 were critical for further Tr1 differentiation, as demonstrated by mAb blocking and by analysis in IFN-gamma(-/-) mice. In conclusion, B7H1 is capable of inducing Tr1 differentiation from naive CD4+ T cells by coactivation in an IFN-gamma- or Th1-dependent manner. Our study may shed some light upon the clinical usage of B7H1 as a therapeutic reagent for induction of tolerance.  相似文献   

14.
15.
We describe a phenotypically and functionally novel monocyte-derived dendritic cell (DC) subset, designated mDC2, that lacks IL-12 synthesis, produces high levels of IL-10, and directs differentiation of Th0/Th2 cells. Like conventional monocyte-derived DC, designated mDC1, mDC2 expressed high levels of CD11c, CD40, CD80, CD86, and MHC class II molecules. However, in contrast to mDC1, mDC2 lacked expression of CD1a, suggesting an association between cytokine production profile and CD1a expression in DC. mDC2 could be matured into CD83+ DC cells in the presence of anti-CD40 mAbs and LPS plus IFN-gamma, but they remained CD1a- and lacked IL-12 production even upon maturation. The lack of IL-12 and CD1a expression by mDC2 did not affect their APC capacity, because mDC2 stimulated MLR to a similar degree as mDC1. However, while mDC1 strongly favored Th1 differentiation, mDC2 directed differentiation of Th0/Th2 cells when cocultured with purified human peripheral blood T cells, further indicating functional differences between mDC1 and mDC2. Interestingly, the transfection efficiency of mDC2 with plasmid DNA vectors was significantly higher than that of mDC1, and therefore mDC2 may provide improved means to manipulate Ag-specific T cell responses after transfection ex vivo. Taken together, these data indicate that peripheral blood monocytes have the capacity to differentiate into DC subsets with different cytokine production profiles, which is associated with altered capacity to direct Th cell differentiation.  相似文献   

16.
The murine B cell FcR for IgG (Fc gamma RII) is a membrane glycoprotein reported to mediate inhibition of B cell activation and differentiation. We show that IL-4 inhibits the enhanced expression of Fc gamma RII by LPS-stimulated B cells. This activity is completely reversed by anti-IL-4 mAb and is specific, in that multiple other lymphokines tested do not exert a similar effect. This effect of IL-4 is apparent by day 1 of culture, although maximal inhibition occurs on day 4 at a concentration of 500 U/ml. The IL-4-induced inhibition of enhanced Fc gamma RII expression by LPS stimulation observed on day 4 of culture is associated with a significant reduction in the steady state level of Fc gamma RII beta gene-specific mRNA. IFN-gamma which inhibits many of the effects of IL-4 on B cells, does not reverse the IL-4-induced inhibition of Fc gamma RII membrane expression nor the levels of beta gene-specific mRNA. Fc gamma RII expression is significantly increased in B cells stimulated with antigen-specific, CD4+ T cell clones of the Th1 type (i.e., IL-2 and IFN-gamma-producing). By contrast, three different Th2 clones (i.e., IL-4-producing) fail to stimulate an increase in Fc gamma RII levels. Anti-IL-4 mAb significantly enhanced Fc gamma RII expression by Th2-stimulated B cells indicating that IL-4 was the active, inhibitory, substance produced by the Th2 cells. Supernatants from stimulated Th2 clones inhibited the enhanced expression of Fc gamma RII by LPS-stimulated B cells and this activity was completely reversed by anti-IL-4 mAb. By contrast, supernatants from stimulated Th1 clones further enhanced Fc gamma RII expression by LPS-stimulated B cells. The differential regulation of B cell Fc gamma RII expression by Th subsets may play an important role in the regulation of humoral immunity by altering the sensitivity of B cells to IgG immune complex-mediated inhibition of B cell activation and differentiation in vivo.  相似文献   

17.
Previous reports have focused on the ability of IL-27 to promote naive T cell responses but the present study reveals that surface expression of WSX-1, the ligand-specific component of the IL-27R, is low on these cells and that highest levels are found on effector and memory CD4(+) and CD8(+) T cells. Accordingly, during infection with Toxoplasma gondii, in vivo T cell activation is associated with enhanced expression of WSX-1, and, in vitro, TCR ligation can induce expression of WSX-1 regardless of the polarizing (Th1/Th2) environment present at the time of priming. However, while these data establish that mitogenic stimulation promotes expression of WSX-1 by T cells, activation of NK cells and NKT cells prompts a reduction in WSX-1 levels during acute toxoplasmosis. Together, with the finding that IL-2 can suppress expression of WSX-1 by activated CD4(+) T cells, these studies indicate that surface levels of the IL-27R can be regulated by positive and negative signals associated with lymphoid cell activation. Additionally, since high levels of WSX-1 are evident on resting NK cells, resting NKT cells, effector T cells, regulatory T cells, and memory T cells, the current work demonstrates that IL-27 can influence multiple effector cells of innate and adaptive immunity.  相似文献   

18.
Suppressor of cytokine signaling (SOCS) proteins have emerged as important regulators of cytokine signals in lymphocytes. In this study, we have investigated regulation of SOCS expression and their role in Th cell growth and differentiation. We show that SOCS genes are constitutively expressed in naive Th cells, albeit at low levels, and are differentially induced by Ag and Th-polarizing cytokines. Whereas cytokines up-regulate expression of SOCS1, SOCS2, SOCS3, and cytokine-induced Src homology 2 protein, Ags induce down-regulation of SOCS3 within 48 h of Th cell activation and concomitantly up-regulate SOCS1, SOCS2, and cytokine-induced Src homology 2 protein expression. We further show that STAT1 signals play major roles in inducing SOCS expression in Th cells and that induction of SOCS expression by IL-4, IL-12, or IFN-gamma is compromised in STAT1-deficient primary Th cells. Surprisingly, IL-4 is a potent inducer of STAT1 activation in Th2 but not Th1 cells, and SOCS1 or SOCS3 expression is dramatically reduced in STAT1(-/-) Th2 cells. To our knowledge, this is the first report of IL-4-induced STAT1 activation in Th cells, and suggests that its induction of SOCS, may in part, regulate IL-4 functions in Th2 cells. In fact, overexpression of SOCS1 in Th2 cells represses STAT6 activation and profoundly inhibits IL-4-induced proliferation, while depletion of SOCS1 by an anti-sense SOCS1 cDNA construct enhances cell proliferation and induces constitutive activation of STAT6 in Th2 cells. These results are consistent with a model where IL-4 has dual effects on differentiating T cells: it simulates proliferation/differentiation through STAT6 and autoregulates its effects on Th2 growth and effector functions via STAT1-dependent up-regulation of SOCS proteins.  相似文献   

19.
Within overall Th1-like human memory T cell responses, individual T cells may express only some of the characteristic Th1 cytokines when reactivated. In the Th1-oriented memory response to influenza, we have tested the contributions of two potential mechanisms for this diversity: variable expression of cytokines by a uniform population during activation, or different stable subsets that consistently expressed subsets of the Th1 cytokine pattern. To test for short-term variability, in vitro-stimulated influenza-specific human memory CD4+ T cells were sorted according to IL-2 and IFNγ expression, cultured briefly in vitro, and cytokine patterns measured after restimulation. Cells that were initially IFNγ+ and either IL-2+ or IL-2- converged rapidly, containing similar proportions of IL-2-IFNγ+ and IL-2+IFNγ+ cells after culture and restimulation. Both phenotypes expressed Tbet, and similar patterns of mRNA. Thus variability of IL-2 expression in IFNγ+ cells appeared to be regulated more by short-term variability than by stable differentiated subsets. In contrast, heterogeneous expression of IFNγ in IL-2+ influenza-specific T cells appeared to be due partly to stable T cell subsets. After sorting, culture and restimulation, influenza-specific IL-2+IFNγ- and IL-2+IFNγ+ cells maintained significantly biased ratios of IFNγ+ and IFNγ- cells. IL-2+IFNγ- cells included both Tbetlo and Tbethi cells, and showed more mRNA expression differences with either of the IFNγ+ populations. To test whether IL-2+IFNγ-Tbetlo cells were Thpp cells (primed but uncommitted memory cells, predominant in responses to protein vaccines), influenza-specific IL-2+IFNγ- and IL-2+IFNγ+ T cells were sorted and cultured in Th1- or Th2-generating conditions. Both cell types yielded IFNγ-secreting cells in Th1 conditions, but only IL-2+IFNγ- cells were able to differentiate into IL-4-producing cells. Thus expression of IL-2 in the anti-influenza response may be regulated mainly by short term variability, whereas different T cell subsets, Th1 and Thpp, may contribute to variability in IFNγ expression.  相似文献   

20.
Human atopen-specific types 1 and 2 T helper cell clones.   总被引:11,自引:0,他引:11  
Eight representative T lymphocyte clones (TLC) randomly selected from previously described panels of CD4+ housedust mite Dermatophagoides pteronyssinus (Dp)-specific TLC from atopic and nonatopic donors were studied in more detail in a comparative investigation. The TLC from the atopic donors closely resembled murine type 2 Th (Th2) cells by secreting substantial IL-4, IL-5, IL-6, TNF-alpha, and granulocyte-macrophage (GM)-CSF, minimal IFN-gamma, and relatively little IL-2. In contrast, the nonatopic's TLC resembled murine type 1 Th (TH1) cells by secreting substantial IFN-gamma, IL-2, TNF-alpha, and GM-CSF, no IL-4, and little IL-5. A difference with murine Th1 cells was their additional secretion of IL-6. These cytokine profiles were consistent upon stimulation via different activation pathways including stimulation with specific Dp Ag, mitogenic lectins, and antibodies to CD2, CD3, or CD28. The observed differences in IL-2 secretion, however, were most evident upon stimulation with anti-CD28. If TLC cells were cultured with highly purified B cells and stimulated with anti-CD3 in the absence of exogenous IL-4, IgE synthesis was induced only in cultures with the atopics' Th2 clones, which could be completely abrogated by anti-IL-4. The mere presence of exogenous rIL-4, however, did not result in IgE synthesis, nor did unstimulated TLC cells alone. But if unstimulated TLC cells (that proved not to secrete detectable amounts of cytokines) were added together with rIL-4, again IgE synthesis was induced only in cultures with the atopics' Th2 clones, suggesting the involvement of an additional, as yet unidentified accessory helper function of the atopics' Th2 clones for IgE induction. Unstimulated Th2 clones showed a significantly higher expression of CD28 than the Th1 clones, but three days after stimulation, CD28 expression was elevated to comparable levels on both subsets. When added to B cells at this time point, together with rIL-4 and anti-IFN-gamma, still only the atopics' Th2 clones supported IgE synthesis, arguing against a role for CD28 in this accessory helper function. Whereas the atopics' Th2 clones were excellent helper cells for IgE induction, a unique property of the nonatopic's Th1 clones was their cytolytic activity toward autologous APC which could be induced by specific Dp Ag and by anti-CD3. The present data provide clear evidence for the existence of Th1 and Th2 cells in man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号