首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronic ethanol increases liver plasma membrane fluidity   总被引:2,自引:0,他引:2  
Purified plasma membrane fractions of cultured well-differentiated Reuber H35 hepatoma cells were studied after growth in the presence or absence of ethanol. Growth of cells in the presence of ethanol significantly increased plasma membrane 5'-nucleotidase activity but did not influence sodium-potassium adenosinetriphosphatase activity. Fluorescence polarization of lipophilic probes was used to study membrane lipid structure. Steady-state polarization of diphenylhexatriene (DPH), a probe of the hydrophobic core, was significantly lower in plasma membranes from cells grown in 80 mM ethanol for 3 weeks, compared to controls. Decreased polarization of DPH in plasma membranes was observed after 3-weeks growth of cells in as little as 1 mM ethanol. A 1-h exposure to 80 mM ethanol had no effect. Altered DPH polarization was due to a decrease in the order parameter of the probe. The rotational correlation time of the probe was virtually unchanged. Chronic ethanol treatment of cells did not alter the polarization of the membrane surface probe trimethylammoniodiphenylhexatriene. Plasma membranes from cells grown in 80 mM ethanol had decreased contents of both phospholipid and unesterified cholesterol, but the cholesterol to phospholipid ratio was unchanged. The percentages of sphingomyelin and phosphatidylserine in plasma membrane phospholipids were significantly decreased after ethanol treatment, while the phosphatidylcholine/sphingomyelin ratio was increased by 42%. Vesicles prepared from total plasma membrane lipids of ethanol-treated cells, as well as vesicles prepared from polar lipids alone, showed the same alterations in DPH polarization as did plasma membranes. The importance of ethanol metabolism in the observed plasma membrane changes was demonstrated in two ways.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Administration of high-dose ethinylestradiol to rats decreases bile flow, Na,K-ATPase specific activity, and liver plasma membrane fluidity. By use of highly purified sinusoidal and bile canalicular membrane fractions, the effect of ethinylestradiol administration on the protein and lipid composition and fluidity of plasma membrane fractions was examined. In sinusoidal fractions, ethinylestradiol (EE) administration decreased Na,K-ATPase activity (32%) and increased activities of alkaline phosphatase (254%), Mg2+-ATPase (155%), and a 160-kDa polypeptide (10-fold). Steady-state and dynamic fluorescence polarization was used to study membrane lipid structure. Steady-state polarization of diphenylhexatriene (DPH) was significantly higher in canalicular compared to sinusoidal membrane fractions. Ethinylestradiol (5 mg/kg per day for 5 days) selectively increased sinusoidal polarization values. Similar changes were demonstrated with the probes 2- and 12-anthroyloxystearate. Time-resolved fluorescence polarization measurements indicated that EE administration for 5 days did not change DPH lifetime but increased the order component (r infinity) and decreased the rotation rate (R). However, 1 and 3 days after EE administration and with low doses (10-100 micrograms/kg per day for 5 days) the Na,K-ATPase, bile flow, and order component were altered, but the rotation rate was unchanged. Vesicles prepared from total sinusoidal membrane lipids of EE-treated rats, as well as phospholipid vesicles, demonstrated increased DPH polarization, as did intact plasma membrane fractions. Liver plasma membrane fractions showed no change in free cholesterol or cholesterol/phospholipid molar ratio, while esterified cholesterol content was increased with high-dose but not low-dose ethinylestradiol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Alterations of membrane lipid biophysical properties of sensitive A549 and resistant A549/DDP cells to the Cis-dichlorodiammine platinum (Cisplatin) were performed by measurements of fluorescence and flow cytometry approaches using fluorescence dyes of DPH, N-AS and Mero-cyanine 540 (MC 540) respectively. Fatty acids of membrane lipid of the two cell lines were analyzed by gas chromatography. The results indicated clearly that fluorescence polarization (P) of the DPH probe is 0.169 for the sensitive A549 cell and 0.194 for the resistant A549/DDP cells. Statistical analysis showed significant difference between the two cell lines. The polarizations of 2-AS and 7-AS which reflect the fluidity of surface and middle of lipid bilayer are 0.134 and 0.144 for the sensitive A549 cells as well as 0.171 and 0.178 for the resistant A549/DDP cells respectively, but there is no significant difference of the polarization of 12-AS between the two cell lines. This shows that alterations of the membrane fluidity of both  相似文献   

4.
Fluorescence polarization measurements with the probe 1,6-diphenyl-1,3,5-hexatriene (DPH) were performed to detect changes in the fluidity of plasma membranes from T-lymphocytes stimulated with mitogens. When the cells were incubated with succinyl-concanavalin A an increase in fluorescence polarization was observed. This, however, could be shown to be due to the interaction of the mitogen with the label DPH and did not reflect changes in the plasma membrane. In purified plasma membranes a decrease rather than an increase of fluorescence polarization was observed.  相似文献   

5.
The aim of this study was to compare the effects of chronic (0.1 mol/L ethanol exposure during 30 days) and acute (0.5 mol/L ethanol exposure during 24 h) ethanol treatment on the physical properties and the lipid composition of plasma membranes of the WRL-68 cells (fetal human hepatic cell line). Using fluorescence polarization we found that ethanol treatment reduced membrane anisotropy due to disorganization of acyl chains in plasma membranes and consequently increased fluidity, as measured with the diphenylhexatriene probe. Addition of ethanolin vitro reduced anisotropy in control plasma membranes, whereas chronically ethanol-treated plasma membranes were relatively tolerant to thein vitro addition of ethanol. Acutely ethanol-treated plasma membranes exhibited a smaller anisotropy parameter value than control plasma membranes. We found a decrease in total phospholipid content in acute ethanol WRL-68 plasma membranes. Cholesterol content was increased in both ethanol treatments, and we also found a significant decrease in phosphatidylinositol and phosphatidylcholine and an increase in phosphatidylethanolamine content in ethanol-treated plasma membranes. Our data showed that ethanol treatment decreased the anisotropy parameter consistently with increased fluidity, while increasing the cholesterol/phospholipid ratio of plasma membranes of WRL-68 cells, but only chronically ethanol-treated plasma membranes exhibited tolerance to thein vitro addition of ethanol. It is important to note that some changes that were interpreted as a result of chronic ethanol treatment were also present in short-period ethanol treatments.Abbreviations DPH diphenylhexatriene - PC phosphatidylcholine - PE phosphatidylethanolamine - PI phosphatidylinositol - PS phosphatidylserine - SPH sphingomyelin  相似文献   

6.
Lithium is regarded as a unique therapeutic agent for the management of bipolar disorder (BD). In efforts to explain the favourable effects of lithium in BD, a wide range of mechanisms was suggested. Among those, the effect of clinically relevant concentrations of lithium on the plasma membrane was extensively studied. However, the biophysical properties of brain membranes isolated from experimental animals exposed to acute, short-term and chronic lithium have not been performed to-date. In this study, we compared the biophysical parameters and level of lipid peroxidation in membranes isolated from forebrain cortex (FBC) of therapeutic lithium-treated and/or sleep-deprived rats. Lithium interaction with FBC membranes was characterized by appropriate fluorescent probes. DPH (1,6-diphenyl-1,3,5-hexatriene) and TMA-DPH (1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluenesulphonate) were used for characterization of the hydrophobic lipid core and Laurdan (6-dodecanoyl-2-dimethylaminonaphthalene) for the membrane-water interface. Lipid peroxidation was determined by immunoblot analysis of 4-HNE-(4-hydroxynonenal)-protein adducts. The organization of polar head-group region of FBC membranes, measured by Laurdan generalized polarization, was substantially altered by sleep deprivation and augmented by lithium treatment. Hydrophobic membrane interior characterized by steady-state anisotropy of DPH and TMA-DPH fluorescence was unchanged. Chronic lithium had a protective effect against peroxidative damage of membrane lipids in FBC. In summary, lithium administration at a therapeutic level and/or sleep deprivation as an animal model of mania resulted in changes in rat FBC membrane properties.  相似文献   

7.
The lipophilic fluorescent probe DPH, generally used to determine the microviscosity of membrane lipids, has been visualized in intact cells by fluorescence microscopy. All lipid material of the cells, including cytoplasmic lipid droplets, was found to be labelled with DPH. The fluorescent signal from inside the cells contributes to a large extent to the total cell fluorescence. The results indicate that fluorescence polarization data obtained from intact cells, using DPH as probe, give information on the total lipid material of the cells rather than exclusive information on microviscosity and fluidity of plasma membranes of these cells, as has been repeatedly suggested.  相似文献   

8.
Highly purified plasma membranes of bovine thyroid were obtained by differential pelleting followed by discontinuous gradient centrifugation in a swing-out rotor. Subfractions of plasma membranes were prepared by affinity chromatography on Con A-Sepharose. The final membrane fractions were enriched 25-30-fold over homogenate in 5'-nucleotidase and alkaline phosphatase and displayed a protein to phospholipid ratio of 1.67 and a cholesterol to phospholipid molar ratio of 0.55. The phospholipid composition did not deviate appreciably from that of whole tissue except for the higher sphingomyelin level (22.5 vs. 14.0%). The predominant fatty acids were palmitic (16:0), oleic (18:1), stearic (18:0) and linoleic (18:2) acid. The physical state of the membrane was studied by (i) calculation of the lipid structural order parameter SDPH from steady-state fluorescence anisotropy determinations of the hydrophobic probe 1,6-diphenyl-1,3,5-hexatriene (DPH); (ii) estimation of the lateral diffusion coefficient of pyrene following excimer formation. These parameters were determined in native thyroid plasma membranes and in reconstituted vesicles, obtained by detergent dialysis from octylglucoside solubilized membrane components. The presence of membrane protein or neutral lipids induced more restraint on the movements of the fluorophores. The lipid order parameter, SDPH was mainly determined by the neutral lipids. Subfractions of plasma membrane enriched in luminal membranes have a slightly lower fluidity (higher SDPH and lower Ddiff values) than subfractions enriched in basolateral membranes. This difference appears to be due to both differences in lipid as well as protein composition. Under physiological conditions, no significant alterations in probe dynamics could be observed upon addition of thyrotropin or cholera toxin, even at micromolar concentrations.  相似文献   

9.
Oat and rye plants were treated with either tetcyclacis (an experimental plant growth regulator), nuarimol (a fungicide) or gamma-ketotriazole (an experimental herbicide). These treatments reduced shoot growth and changed the lipid composition of the shoot plasma membranes. In oat, both tetcyclacis and nuarimol treatments increased plasma membrane cholesterol and increased the phosphatidylethanolamine/phosphatidylcholine (PE/PC) ratio, whereas gamma-ketotriazole treatment reduced cholesterol and the PE/PC ratio. In rye, all treatments reduced the PE/PC ratio. Generally, the sterol/phospholipid ratio was less in oat than in rye but the cholesterol/phospholipid ratio was greater. With all treatments in oat and rye, increases were observed in unsaturation of the phospholipid acyl chains. The fluidity of membranes was measured by steady-state fluorescence polarisation of the probe diphenylhexatriene; oat membranes were more fluid than rye. Membrane fluidity was greater in plasma membranes from plants treated with the xenobiotics than the controls. The results are discussed in the context of the effect of plasma membrane lipid composition on membrane fluidity, and it is concluded that there appears to be no overall simple relationship between membrane lipid composition and fluidity that holds for all treatments in both species.  相似文献   

10.
Alterations of membrane lipid biophysical properties of sensitive A549 and resistant A549/DDP cells to the Cis-dichlorodiammine platinum (Cisplatin) were performed by measurements of fluorescence and flow cytometry approaches using fluorescence dyes of DPH, N-AS and Merocyanine 540 (MC 540) respectively. Fatty acids of membrane lipid of the two cell lines were analyzed by gas chromatography. The results indicated clearly that fluorescence polarization (P) of the DPH probe is 0.169 for the sensitive A549 cell and 0.194 for the resistant A549/DDP cells. Statistical analysis showed significant difference between the two cell lines. The polarizations of 2-AS and 7-AS which reflect the fluidity of surface and middle of lipid bilayer are 0.134 and 0.144 for the sensitive A549 cells as well as 0.171 and 0.178 for the resistant A549/DDP cells respectively, but there is no significant difference of the polarization of 12-AS between the two cell lines. This shows that alterations of the membrane fluidity of both cells were mainly located on the surface and middle of the lipid bilayer. In addition, the packing density of phospholipid molecules in the membrane of the two cell lines detected by MC540 probe indicated that lipid packing of A549 cell membranes was looser than that of the A549/DDP cells. And unsaturation degree of plasma membrane fatty acids of the A549/DDP cells was also lower than that of A549 cells. Taken together, it was proposed that the alteration of membrane lipid biophysical state may be involved in the resistance of A549/DDP cells to cisplatin.  相似文献   

11.
Alterations of membrane lipid biophysical properties of sensitive A549 and resistant A549/DDP cells to the Cis-dichlorodiammine platinum (Cisplatin) were performed by measurements of fluorescence and flow cytometry approaches using fluorescence dyes of DPH, N-AS and Merocyanine 540 (MC 540) respectively. Fatty acids of membrane lipid of the two cell lines were analyzed by gas chromatography. The results indicated clearly that fluorescence polarization (P) of the DPH probe is 0.169 for the sensitive A549 cell and 0.194 for the resistant A549/DDP cells. Statistical analysis showed significant difference between the two cell lines. The polarizations of 2-AS and 7-AS which reflect the fluidity of surface and middle of lipid bilayer are 0.134 and 0.144 for the sensitive A549 cells as well as 0.171 and 0.178 for the resistant A549/DDP cells respectively, but there is no significant difference of the polarization of 12-AS between the two cell lines. This shows that alterations of the membrane fluidity of both cells were mainly located on the surface and middle of the lipid bilayer. In addition, the packing density of phospholipid molecules in the membrane of the two cell lines detected by MC540 probe indicated that lipid packing of A549 cell membranes was looser than that of the A549/DDP cells. And unsaturation degree of plasma membrane fatty acids of the A549/DDP cells was also lower than that of A549 cells. Taken together, it was proposed that the alteration of membrane lipid biophysical state may be involved in the resistance of A549/DDP cells to cisplatin.  相似文献   

12.
The effects of membrane perturbants (ethanol, pentobarbital, chloroform, diethylether, phenytoin, cis-vaccenic acid methylester, and cis-vaccenoyl alcohol) on the lipid order of mouse brain synaptic plasma membranes (SPM) were tested by fluorescence polarization using 1,6-diphenyl-1,3,5-hexatriene (DPH) as a probe of the membrane core and 1-[4-(trimethylammonium)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH) as a probe of the membrane surface. The compounds decreased the fluorescence polarization of both probes, indicating that they disordered the membrane lipids. The decrease in polarization was, however, greater for DPH than for TMA-DPH, suggesting a greater effect on the membrane core than on the membrane surface. The voltage-dependent uptake of 24Na and 45Ca was studied in isolated mouse brain synaptosomes as a measure of membrane function. All of the compounds inhibited sodium influx, and their potencies for decreasing sodium uptake and fluorescence polarization of DPH were linearly correlated (r = 0.91). The relationship between changes in sodium influx and TMA-DPH polarization was less consistent (r = 0.66). Synaptosomal calcium uptake was inhibited by most, but not all, of the perturbants, but this inhibition was poorly correlated with changes in fluorescence polarization of DPH (r = 0.36) or TMA-DPH (r = 0.26). These results indicate that the function of synaptic sodium channels is correlated with lipid order in the hydrophobic core of the membrane and that the inhibitory effects of intoxicant-anesthetic drugs on neuronal sodium fluxes may be the result of their capacity to disorder these lipids. In contrast, the effects of drugs on voltage-dependent calcium channels were not clearly related to the capacity of these agents to disorder membrane lipids.  相似文献   

13.
Hepatic plasma membrane lipids of lean (+/?) and obese (ob/ob) mice have been investigated using 1,6-diphenylhexatriene (DPH). Arrhenius plots of DPH fluorescence polarization in membranes showed the breakpoint in obese mice was reduced from 21 to 15 degrees C, whereas the breakpoint of 5'-nucleotidase activity was raised from 23 to 32 degrees C. Arrhenius break temperatures of DPH polarization and 5'-nucleotidase activity responded differently to housing mice at 34 degrees C and triiodothyronine (T3) treatment. Studies of DPH polarization in liposomes and phospholipid fatty acid composition suggested that differences in sphingomyelin acyl composition determine Arrhenius characteristics of hepatic 5'-nucleotidase in lean and obese mice.  相似文献   

14.
The modulation of rat brain microsomal and synaptosomal membrane lipid by diet fat was examined. Brain synaptosomal and microsomal membrane composition was compared for rats fed on diets containing either soya-bean oil (SBO), SBO plus choline, SBO lecithin, sunflower oil (SFO), chow or low-erucic acid rape-seed oil (LER) for 24 days. Cholesterol and phosphatidylcholine levels in both membranes were altered by diet. Diet fat also affected the microsomal content of sphingomyelin. Change in membrane phosphatidylcholine level was related to the relative balance of omega-6, omega-3 and monounsaturated fatty acids within the diets fed. The highest phosphatidylcholine levels appeared in membranes of animals fed on SBO lecithin and the lowest in those fed on LER. Microsomal membrane cholesterol and sphingomyelin content increased by feeding on SBO lecithin. In both synaptosomal and microsomal membranes a highly significant correlation was observed between membrane phosphatidylcholine and cholesterol content. The fatty acyl composition of phospholipids from both membranes also altered with diet and age. Alteration in fatty acid composition was observed in response to dietary levels of omega-6, omega-3 and monounsaturated fatty acids, but the unsaturation index of each phospholipid remained constant for all diet treatments. These changes in lipid composition suggest that dietary fat may be a significant modulator in vivo of the physicobiochemical properties of brain synaptosomal and microsomal membranes.  相似文献   

15.
The apparent steady-state fluorescence anisotropy of DPH- or TMA-DPH-labeled washed rat platelets is strongly affected by factors that also influence the turbidity by these platelet suspensions. Sonicated preparations from platelet lipids have a low turbidity and give anisotropy values which are hardly affected by the experimental conditions. We studied the effect of four high-fat diets on membrane fluidity, lipid composition and activation tendency of washed platelets. The diets contained 50 energy% of oils with different levels of saturated and (poly)unsaturated fatty acids. Only small diet-induced differences in DPH fluorescence anisotropy were found, which were comparable for intact platelets and platelet lipids. These differences were unrelated to the degree of saturation of the dietary fatty acids. Platelets from rats fed mainly saturated fatty acids differed significantly from other diet groups in a higher unsaturation degree of phospholipids and a lower cholesterol/phospholipid ratio, but this was not detected by DPH in terms of decreased anisotropy. These platelets aggregated less than other platelets in response to thrombin or collagen. The lower response to collagen persisted in indomethacin-treated platelets activated with the thromboxane A2 mimetic U46619, indicating a different sensitivity of these platelets for thromboxane A2. We conclude that in rat platelets: (a) the overall membrane fluidity and phospholipid unsaturation degree are subject to strong homeostatic control; (b) steady-state anisotropy with DPH or TMA-DPH label is inadequate to reveal subtile changes in lipid profile; (c) changes in platelet responsiveness to thrombin and thromboxane A2, rather than (plasma) membrane fluidity, determine the effect of dietary fatty acids on platelet aggregation.  相似文献   

16.
An investigation has been carried out of the relationship between changes in the fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) and concomittant changes in the lateral diffusion of proteins and lipid probes in membranes. Plasma membranes from lymphocytes and a CH1 mouse lymphoma line were treated with up to 70 mol% (relative to the total membrane phospholipid) of oleic or linoleic fatty acids. Under these conditions the fluorescence polarization of DPH decreased by between 8 and 15% which, in the framework of the microviscosity approach, suggests a membrane fluidity change of between 20 and 50%. The lateral diffusion coefficients of surface immunoglobin and the lipid probes 3,3′-dioctadecylindocarbocyanine and pyrene were also measured in these membranes using the fluorescence photobleaching recovery technique and the rate of pyrene excimer formation. The diffusion rates were found to be unaffected by the presence of free fatty acids. Hence despite large ‘microviscosity’ changes as reported by depolarization of DPH fluorescence, lateral diffusion coefficients are essentially unchanged. This finding is consistent with the idea that perturbing agents such as free fatty acids do not cause a general fluidization of the membrane but act locally to alter, for example, protein function. It is also consistent with the suggestion that lateral mobility of membrane proteins is not modulated by the lipid viscosity.  相似文献   

17.
Brush border membranes (BBM) are isolated from middle and posterior intestine of trout fed either an essential fatty acid-rich diet or a saturated one. The different phospholipid classes are separated, and their fatty acid composition is determined. Fluorescence anisotropy studies are performed using two lipid fluorophores, namely diphenylhexatriene (DPH) and trimethyl-aminodiphenylhexatriene (TMA-DPH). The results indicate that the usual parameters affecting the lipid fluidity such as the phospholipid:protein (PL:PROT), cholesterol:phospholipid (CHOL:PL), and sphingomyelin:phosphatidylcholine (SP:PC) ratios and the unsaturation of the acyl chains are sufficient to explain the fluidity values determined using DPH, but not those obtained with TMA-DPH as a probe. This fluorophore is assessed to be localized only in the external leaflet of the membrane. Hence, it will be affected by the composition of the major phospholipids of this leaflet, sphingomyelin and phosphatidylcholine.  相似文献   

18.
Brush border membranes (BBM) are isolated from middle and posterior intestine of trout fed either an essential fatty acid-rich diet or a saturated one. The different phospholipid classes are separated, and their fatty acid composition is determined. Fluorescence anisotropy studies are performed using two lipid fluorophores, namely diphenylhexatriene (DPH) and trimethylamino-diphenylhexatriene (TMA-DPH). The results indicate that the usual parameters affecting the lipid fluidity such as the phospholipid:protein (PL:PROT), cholesterol:phospholipid (CHOL:PL), and sphingomyelin:phosphatidylcholine (SP:PC) ratios and the unsaturation of the acyl chains are sufficient to explain the fluidity values determined using DPH, but not those obtained with TMA-DPH as a probe. This fluorophore is assessed to be localized only in the external leaflet of the membrane. Hence, it will be affected by the composition of the major phospholipids of this leaflet, sphingomyelin and phosphatidylcholine.  相似文献   

19.
The fluorescence probe, 1,6-diphenyl-1,3,5-hexatriene, has been used to investigate the effects of controlled and uncontrolled growth on the dynamic properties of the lipid regions of hepatocyte plasma membranes. DPH was incubated with plasma membranes derived from quiescent and regenerating liver and Morris hepatoma 7777, and the resulting systems were studied by fluorescence polarization spectroscopy. Membranes from the rapidly growing hepatoma exhibited a significantly lower fluorescence polarization than observed in quiescent liver, suggesting the presence of a more fluid membrane lipid domain. Membranes from regenerating liver exhibited a time-dependent increase in membrane fluidity, reaching a maximum 12 h after growth stimulation. A close correspondence between membrane fluidity and the cholesterol-phospholipid ratio was also observed where a decrease in this ratio resulted in a more fluid lipid matrix. These results suggest that cell cycling, as observed in regenerating liver and Morris hepatoma 7777, results in significant increases in membrane fluidity, a property which may play an important regulatory role in various cell functions.  相似文献   

20.
Neurochemical studies were performed on synaptosomal membranes from cats with GM1 or GM2 gangliosidosis to examine possible mechanisms of neuronal dysfunction in these disorders. The basic hypothesis tested was that deficient ganglioside catabolism causes increased ganglioside content of synaptosomal plasma membrane which in turn disrupts normal function. Fluidity characteristics of synaptosomal membranes were examined using fluorescence polarization. Results showed markedly reduced membrane fluidity in both GM1 and GM2 gangliosidosis. These results were supported by a second study which revealed that isolated synaptosomal membranes of GM1 gangliosidosis cats had a 24-fold increase in total ganglioside content caused predominantly by excess GM1, a 2.3-fold increased cholesterol content, and a 1.4-fold increased phospholipid content. Finally, kinetic analysis of synaptosomal plasma membrane Na+,K+-ATPase from cats with GM1 gangliosidosis showed negligible differences in kinetic parameters compared with controls. Thus, the enzyme appeared protected from the global membrane changes in fluidity and composition. These observations provide evidence for a pathogenetic mechanism of neuronal dysfunction in the gangliosidoses while demonstrating protection of certain vital functional components, such as Na+,K+-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号